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In recent years, wearable sensing technologies for horses have progressed notably, enabling 

real-time monitoring of key physiological and behavioral parameters. When combined with 

advanced machine learning techniques, such systems can reveal patterns linked to early signs 

of diseases like colic, lameness, and heat stress. Despite their potential, practical deployment 

has been limited due to connectivity challenges, lack of localized datasets, and single-parameter 

monitoring approaches. In this study, we present an IoT-enabled horse health monitoring 

framework designed for Indian breeds, integrating temperature, humidity, motion, and 

respiration sensors with microcontrollers such as NodeMCU and ESP32. Data is transmitted 

via ZigBee and LoRaWAN protocols, stored on cloud platforms, and analyzed through models 

including Random Forest, Ridge Regression, and SVM, achieving predictive accuracies above 

90%. A real-time dashboard provides visualization, historical analysis, and instant alerts for 

abnormal conditions. Field testing demonstrated that elevated body temperatures correlated 

with abnormal activity patterns, validating the system’s predictive capability. This IoT–ML 

approach not only reduces dependency on manual observation but also minimizes treatment 

costs, enhances animal welfare, and supports scalable herd-level deployment for precision 

livestock management. 

Keywords: Horse Health Monitoring, IoT Framework, Wearable Sensors, Machine Learning, 

Cloud Computing, ZigBee, LoRaWAN, Predictive Analytics, Equine Welfare, Real-Time 

Dashboard. 

 

I. Introduction 

Horses remain economically and culturally significant worldwide, contributing to sport, 

leisure, work, and rural livelihoods. Yet equine health management is still dominated by 

periodic, observer-dependent checks that can miss subtle or early signs of disease. Delay is 

costly: conditions such as colic, lameness, exertional heat illness, and respiratory compromise 

can escalate rapidly, degrading welfare and driving up treatment costs. As a result, there is a 

growing emphasis on continuous, objective monitoring—ideally with systems that are 
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noninvasive, scalable across herds, and robust in outdoor environments typical of equine 

management. This emphasis aligns with the broader shift in animal agriculture toward 

Precision Livestock Farming (PLF), which integrates on-animal sensing, networked 

communication, and computational analytics to inform proactive care (Neethirajan, 2017).  

Within PLF, wearable sensing has emerged as an enabling layer. Contemporary devices capture 

multiple physiological and behavioral signals—heart and respiratory activity, body 

temperature, posture, gait kinematics, and activity—yielding longitudinal datasets far richer 

than what is achievable through sporadic human observation (Neethirajan, 2017). These data 

streams unlock insight into welfare status and performance and provide the substrate for 

automated anomaly detection and forecasting. As these systems matured in production 

animals, equine-specific research followed, demonstrating that machine learning (ML) can 

convert raw wearable signals into clinically useful information. A prominent example is 

automated gait classification: using a full-body network of seven inertial measurement units 

(IMUs) across 120 horses and eight gaits, Bragança et al. (2020) showed that higher-

dimensional ML models can achieve ≈97% classification accuracy, supporting objective 

locomotion assessment and informing lameness screening earlier than visual inspection alone.  

ML has also been applied to triage of acute equine disease. Fraiwan and Abutarbush (2020) 

trained models on routine clinical variables gathered at presentation for colic (acute abdomen) 

and demonstrated that AI could predict need for surgery and survivability more accurately than 

conventional heuristics. Such results suggest that when physiological time series from 

wearables are combined with clinical metadata, predictive tools can move decision-making 

forward in time, enabling earlier intervention and potentially better outcomes (Fraiwan & 

Abutarbush, 2020).  Despite these advances, deployment at herd scale remains challenging. 

Many reported equine systems are single-parameter (e.g., only motion or only temperature), 

which limits diagnostic specificity. Even when multiple sensors are integrated, practical 

constraints in wireless communication often restrict monitoring to stables or small paddocks. 

Short-range protocols—Bluetooth, Wi-Fi, and ZigBee—are power-efficient and readily 

available but have modest ranges and are sensitive to terrain and occlusion. In large, irregular 

pastures where horses roam, these constraints force multi-hop relays or dense infrastructure, 

adding cost and complexity (Nadimi et al., 2008; Nadimi et al., 2012).  

To extend range while preserving energy efficiency, livestock studies increasingly adopt Low-

Power Wide-Area Networks (LPWANs), especially LoRa/LoRaWAN. LoRa uses a chirp 

spread spectrum physical layer to deliver multi-kilometer coverage at sub-tens-of-kbps data 

rates with low power budgets, which suits periodic telemetry from animal-borne nodes 

(Augustin et al., 2016). LoRaWAN networks are simple to operate but have capacity and duty-

cycle constraints that must be respected; an influential overview by Adelantado et al. (2017) 

details these capabilities and limits, guiding realistic link budgets and duty-cycle planning. In 

practice, deployments in grazing systems have shown ranch-scale feasibility: Translational 

Animal Science reported a low-cost LoRa sensor suite for tracking livestock location and 

activity in open pasture, demonstrating operational range and end-to-end telemetry under field 

conditions (Andersen et al., 2021).  
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A complementary systems insight from broader smart agriculture literature is the value of 

hybrid architectures that combine short-range sensor clusters with long-range backhaul. 

Tzounis et al. (2017) reviewed IoT in agriculture, emphasizing that robust data pipelines often 

rely on multi-tier networks (e.g., sensor clusters feeding local gateways, which then publish to 

cloud services) and lightweight messaging protocols designed for constrained devices. In this 

context, MQTT—an open OASIS/ISO standard—has become a de facto telemetry layer for 

IoT owing to its publish/subscribe model, small code footprint, and reliability on lossy links 

(OASIS MQTT v3.1.1). Real-world equine case studies corroborate feasibility. The Libelium 

“Smart Horse” deployment used Waspmote nodes to monitor health indicators and stable 

environment, streaming to cloud dashboards for alerting around colic, foaling, and abnormal 

behavior. While not peer-reviewed, it demonstrates systems integration and operational value 

in a facility setting and highlights the importance of combining animal-borne and 

environmental sensors to contextualize physiology (Libelium, 2015).  

Equine biomechanics research further motivates sensor fusion. Beyond deep-learning gait 

classification, clinical studies have validated IMU-based symmetry metrics for lameness 

examinations and reported agreement across IMU systems (Pfau et al., 2016). The maturing 

evidence base—ranging from narrative reviews on IMU technologies in equine gait analysis 

to comparative validation studies—indicates that IMUs are sufficiently accurate for field use 

and can capture subtle movement asymmetries relevant to early pathology (Pfau et al., 2016; 

Zink et al., 2023).  

Taken together, the literature points to an opportunity and a gap. Opportunity: IoT sensing plus 

ML can deliver early, objective insight into equine health and performance, moving care from 

reactive to proactive. Gap: most equine systems either (i) monitor limited parameters, (ii) are 

tethered to short-range connectivity that does not scale to pastures, or (iii) lack localized 

datasets that reflect breed, climate, and management differences—factors known to influence 

physiology and behavior in livestock. Addressing this requires integrated, multi-sensor 

wearables and hybrid networks that combine short-range links (e.g., ZigBee) for intra-pen 

clusters with LoRaWAN backhaul to cover fields, all bound by lightweight telemetry (MQTT) 

into a cloud analytics layer where supervised ML can perform anomaly detection and risk 

stratification. 

This study responds by developing a field-deployable IoT framework for equine remote health 

monitoring powered by ML. On the perception layer, we integrate an accelerometer–

gyroscope IMU for gait and activity, plus environmental sensors (e.g., temperature/humidity) 

that contextualize physiological responses and help detect heat stress risk. On the edge layer, 

a microcontroller performs signal conditioning, windowing, and summary feature extraction 

to reduce bandwidth and energy. On the network layer, ZigBee supports short-range 

aggregation (10–100 m, 20–250 kbps) within barns or pens, while LoRaWAN provides long-

range links (multi-kilometer) across pastures, each chosen for its power-range trade-off and 

interference profile in rural radio environments (Nadimi et al., 2008; Augustin et al., 2016; 

Adelantado et al., 2017). On the cloud/analytics layer, we employ MQTT for reliable, low-

overhead publish/subscribe telemetry and run supervised ML (e.g., Random Forests, Support 

Vector Machines, and interpretable Decision Trees) for early detection of deviations from 
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individual baselines and herd norms. The visualization layer provides real-time dashboards, 

trend analytics, and rule-based alerts for owners and veterinarians, supporting timely 

intervention.  

The architectural choices reflect best practices gleaned from the literature: (1) multi-parameter 

sensing to improve specificity over single-channel devices; (2) edge summarization to 

preserve energy and spectrum; (3) hybrid networking tuned to equine facility layouts and field 

topologies; and (4) model selection that balances accuracy with transparency, aligning with 

veterinary workflows. Field deployments in ruminants suggest that LoRaWAN can support 

kilometer-scale coverage with duty-cycled packets and that GPS plus inertial sensing enables 

behavior inference under pasture conditions (Andersen et al., 2021; Augustin et al., 2016). 

Equine biomechanics studies show that IMU-based symmetry metrics and gait classification 

can flag deviations compatible with lameness before overt signs are obvious to the eye 

(Bragança et al., 2020; Pfau et al., 2016). Together, these strands justify a unified, IoT-ML 

system tailored to horses rather than borrowing wholesale from bovine solutions, which face 

different movement ecology and handling realities.  

Finally, our work prioritizes scalability and reproducibility. All communication choices are 

standards-based (ZigBee, LoRaWAN, MQTT) with widely available components; signal 

processing and model training workflows are modular to accommodate additional sensors 

(e.g., heart-rate photoplethysmography when motion artifacts permit) and evolving 

algorithms; and dashboards are role-based to present the right granularity to caretakers vs. 

clinicians. By closing the loop from sensing → communication → analytics → alerting, the 

proposed framework advances equine welfare and operational efficiency, and contributes to 

the evidence base for precision equine medicine in both stable and pasture contexts 

(Neethirajan, 2017; Tzounis et al., 2017; Adelantado et al., 2017; Andersen et al., 2021). 

II. Materials and Methods 

System Overview 

The proposed IoT-enabled horse health monitoring system consists of three major layers: a 

wearable sensing device mounted on the horse, an edge receiver with processing capability, 

and a cloud-based analytics platform. The wearable continuously acquires physiological and 

behavioral parameters and transmits the data wirelessly to a local gateway. The gateway relays 

the data to the cloud through lightweight messaging protocols, enabling long-term storage, 

real-time dashboards, and anomaly detection through machine learning models. An alerting 

mechanism is integrated into the system so that caretakers and veterinarians can receive timely 

notifications when monitored values exceed predefined thresholds. 
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Figure 1. IoT system framework for equine health monitoring. 

Wearable Sensing Device 

The wearable device was designed to be compact, lightweight, and comfortable for equine 

subjects. An ESP32 microcontroller served as the central processing unit due to its integrated 

Wi-Fi, dual-core processing, and sufficient memory for local buffering. The unit was powered 

by a rechargeable lithium polymer battery, regulated to ensure stable 3.3 V operation. 

Multiple sensing modules were integrated to provide multi-parameter monitoring. An 

ADXL345 tri-axial accelerometer captured motion data and facilitated step counting, while 

also contributing to activity classification. A BMP280 sensor measured ambient temperature 

and relative humidity, parameters critical for identifying heat stress risk. In addition, a flex 

sensor was incorporated to approximate respiration patterns by detecting cyclic expansions 

and contractions. All sensors communicated with the microcontroller via the I²C protocol, 

enabling efficient synchronization with minimal wiring. 

The circuit was implemented on a custom PCB designed for low noise and stable power 

delivery. The entire assembly was enclosed within a 3D-printed PLA casing, which provided 

protection against environmental factors. The enclosure was fitted with adjustable straps, 

allowing the device to be mounted securely onto the horse without causing discomfort during 

locomotion. 



                              Iot Enabled Horse Remote Health …  Adhyaru Yagna Bhupendrakumar, et al. 5065 

 

Nanotechnology Perceptions 20 No. S14 (2024) 5060-5070 

 

Figure 2. Wearable prototype mounted on a horse. 

Communication and Cloud Infrastructure 

The communication design followed a hybrid approach to meet both short-range and long-

range requirements. Within stables and pens, ZigBee was used to transmit data reliably across 

tens of meters with low energy consumption. For pasture-scale monitoring, LoRaWAN was 

adopted, providing multi-kilometer range at sub-22 kbps data rates. Both protocols ensured 

low power operation, thereby extending battery life on the wearable. 

All data were encapsulated and transmitted via the MQTT protocol, which provides a 

lightweight publish–subscribe messaging structure optimized for unreliable networks. A 

Mosquitto broker was used to manage incoming telemetry, while client libraries subscribed to 

specific topics for storage, visualization, and model inference. In the cloud layer, Microsoft 

Azure served as the primary storage and compute platform. Raw data were first stored in time-

stamped format before undergoing preprocessing and feature extraction. Visualization 

dashboards were created to present live telemetry, historical trends, and alerts in an accessible 

form to both caretakers and veterinarians. 

Data Collection Protocol 

Field data collection was conducted on indigenous breeds including Marwari and Kathiyawadi 

horses, housed at a dedicated equine facility. Over a period of six months, the system was 

deployed twice per week, yielding more than 6,000 total records. After applying data-quality 

filters to remove incomplete or corrupted entries, 5,559 validated records remained for 

analysis. Each wearable device continuously logged accelerometer signals (AccX, AccY, 

AccZ), gyroscope readings (GyroX, GyroY, GyroZ), derived magnitudes, step count, and 

environmental temperature. These variables formed the basis for both descriptive analysis and 

predictive modeling. To validate the temperature readings, thresholds were set based on 
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veterinary guidelines; any temperature above 39°C was considered indicative of possible heat 

stress. 

Machine Learning Pipeline 

The processed dataset was used to train supervised machine learning models to detect 

anomalies and predict potential health risks. Two algorithms were selected for evaluation: 

Random Forest Regression and Ridge Regression. The Random Forest approach was chosen 

for its ability to handle non-linear relationships and feature interactions, while Ridge 

Regression was included for its efficiency and robustness with collinear predictors. The dataset 

was divided into an 80/20 train–test split. Features included raw accelerometer and gyroscope 

readings, step count, and temperature. Preprocessing involved normalization and derivation of 

magnitudes to reduce sensitivity to orientation. Random Forest was implemented with 100 

estimators, while Ridge Regression used an alpha value of 10. Model performance was 

evaluated using Mean Squared Error (MSE) and coefficient of determination (R²). Random 

Forest achieved an R² of approximately 0.92 with MSE of 0.83, while Ridge Regression 

achieved R² of 0.90 with MSE of 1.04. These results confirmed that both models were effective 

for anomaly detection, though Random Forest offered superior predictive accuracy. 

 

Figure 3. Machine learning model performance. 

Alerting Mechanism 

In addition to continuous monitoring and prediction, a simple threshold-based alert system 

was integrated to provide immediate warnings. When both the actual and predicted 

temperature exceeded 39°C, the system flagged a possible disease or heat stress event. 

Notifications were transmitted to the caretaker’s interface via the dashboard. This hybrid 

approach—rule-based alerts combined with ML predictions—ensured a balance between 

interpretability and predictive power. The firmware for the ESP32 was developed in Arduino 
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IDE. Data handling, preprocessing, and machine learning model development were performed 

using Python, supported by Google Colab and IBM machine learning tools. Cloud storage and 

visualization were hosted on Microsoft Azure, while R was employed for statistical testing. 

MQTT traffic was brokered by Mosquitto with PubSub client libraries managing 

subscriptions. 

III. Results and Discussion 

A. Results on Data Transmission 

To evaluate wireless communication performance, several transmission modules were tested, 

including the ESP8266, ESP32, and the RFM95. The ESP8266 and ESP32 rely on Wi-Fi, 

whereas the RFM95 operates via LoRa-based radio communication. Transmission distance 

was the primary metric while ensuring a stable data rate suitable for continuous health 

monitoring. 

As shown in Figure 3a, the ESP8266 demonstrated an effective range of only ~3 meters, and 

the ESP32 achieved ~18 meters. Both modules were strongly affected by obstacles; the 

ESP8266 could not transmit through the horse body, and the ESP32 lost connectivity in the 

presence of barn/stall walls. By contrast, the RFM95 consistently outperformed them, 

achieving a maximum distance of ~305 meters without significant interference, even when 

obstacles were present. 

Further testing examined the effect of antenna length on RFM95 communication range. 

Antennas of quarter, half, and full lengths were fabricated, corresponding to 8.2 cm, 16.4 cm, 

and 32.8 cm, respectively, based on the radio frequency of 915 MHz. The quarter-length 

antenna yielded the longest transmission range at 305 meters, compared to 183 meters for the 

half-length and 229 meters for the full-length (Figure 3b). Thus, the optimal transmission 

configuration was identified as the RFM95 module with a quarter-wave antenna. 

 

Figure 3a. Transmission ranges of the three tested modules (ESP8266, ESP32, and 

RFM95) showing the superior performance of RFM95 in terms of distance and obstacle 

tolerance. 
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Figure 3b. Transmission distances of the RFM95 module with quarter, half, and full 

antenna lengths, demonstrating that the quarter-wave antenna achieved the longest 

range. 

B. Results on Accuracy of the Wearable Sensing Devices 

The wearable system integrated a PPG sensor along with accelerometer, gyroscope, and GPS 

modules to continuously monitor the horses’ health and movement. During testing, it was 

observed that tail-mounted placement of the PPG sensor, while convenient, introduced 

significant motion artifacts, especially during tail flicking. These artifacts manifested as 

abnormal peaks and distortions in the recorded PPG signals, thereby affecting HR estimation. 

To address this, a multi-stage motion-artifact filtration pipeline was developed. First, abnormal 

movements were detected by the gyroscope, which exhibited sharp fluctuations corresponding 

to abrupt PPG spikes. Once identified, these corrupted waveform segments were selectively 

removed, minimizing loss of valid data. The filtered signals then underwent baseline wander 

correction to eliminate slow-frequency drift caused by movement or respiration cycles. Finally, 

the cleaned signal was processed with a low-pass Butterworth filter, enhancing waveform 

smoothness and peak clarity for accurate HR detection. 

The accelerometer data further complemented this process by confirming activity levels during 

walking, trotting, or resting states. Simultaneously, the GPS module successfully logged 

location data, even within barn environments where sky visibility was reduced, demonstrating 

the robustness of the wearable system in both indoor and outdoor scenarios. To validate 

accuracy, HR values recorded by the PPG sensors were compared with stethoscope-derived 

baseline HRs (28–45 bpm range). Across all eight horses, the average percentage error was 

calculated at ~5%. Applying the defined error model, the overall accuracy of the system was 

found to be 95%, confirming that the sensor unit consistently produced reliable results in both 

barn and open-field testing. 

C. Results on Herding Behaviors 

Beyond vital sign monitoring, the IoT system was leveraged to analyze the horses’ herding 

behaviors and the influence of environmental stressors. Using integrated GPS and motion 
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sensors, location and HR data were transmitted to a central station within a 300-meter range, 

enabling in-field behavioral mapping. The analysis revealed elevated HR levels near the 

eastern and southern fences, areas associated with the presence of the barn and a nearby service 

road with vehicular traffic. When the field was divided diagonally into two regions, horses in 

Region 1 (eastern/southern) exhibited a mean HR of 36.6 bpm, while those in Region 2 

(northern/western) recorded a lower mean HR of 34.7 bpm. Statistical analysis using the 

Mann-Whitney U test confirmed that the difference was highly significant (p < 0.0001). 

When compared to baseline barn HRs, Region 1 horses showed a modest reduction of -1.4 

bpm, while Region 2 horses displayed a greater reduction of -4.3 bpm. This suggests that while 

field exposure generally lowered HR compared to barn confinement, the barn itself acted as a 

stressor due to limited space and restricted movement. Interestingly, clustering analysis of GPS 

data revealed that horses spent the majority of their time in Regions A and B, which contained 

feeding gates, water points, and salt licks. This indicates that necessity-driven behaviors, such 

as accessing resources, outweighed mild stress responses in these areas. Furthermore, horses 

were observed to congregate near the barn during windy periods, utilizing it as a natural 

windbreak despite its association with higher stress signals. 

Overall, these findings demonstrate the system’s capability to not only provide accurate 

physiological monitoring but also to deliver valuable insights into how environmental and 

management factors influence equine behavior and stress responses in real-world field 

conditions. 

IV. Conclusion 

This study successfully demonstrated the development and validation of an IoT-enabled 

wearable health monitoring system for horses, integrating PPG sensors, accelerometer, 

gyroscope, and GPS modules to provide continuous and reliable physiological and behavioral 

insights. The system achieved a robust 95% accuracy in HR estimation when compared against 

stethoscope-derived baseline values, confirming the effectiveness of the motion-artifact 

filtration pipeline in mitigating distortions caused by tail flicking and other movements. By 

ensuring consistent signal quality through gyroscope-assisted artifact detection, baseline 

wander removal, and low-pass filtering, the wearable device proved reliable in both barn and 

open-field conditions. Beyond individual health monitoring, the system enabled a deeper 

understanding of herding behaviors by mapping HR fluctuations across the testing field. 

Horses exhibited elevated HRs near the eastern and southern fences, correlating with 

environmental stressors such as barn confinement and road traffic. Statistical analysis 

confirmed significant differences in HR between regions, while reductions in HR outside the 

barn highlighted the role of confinement as a stress factor. Interestingly, despite stress-

associated HR responses, clustering analysis revealed that horses spent the majority of their 

time in areas associated with essential resources such as feeding gates, water points, and salt 

licks, underscoring the balance between physiological stress and resource-driven necessity. 

Overall, the findings emphasize the system’s dual utility: accurate health monitoring at the 

individual level and actionable insights into environmental and management influences on 

herd behavior. This integrated approach highlights the potential of IoT-based wearables to 
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transform equine health management by enabling proactive interventions, reducing risks of 

disease, and improving welfare outcomes in real-world farm settings. 
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