
Nanotechnology Perceptions   
ISSN 1660-6795  

www.nano-ntp.com   

 

Nanotechnology Perceptions 20 No. S14 (2024) 5071-5089 

Enhanced HRA-YOLO Architecture For 

Reliable Identification Of Hilsa Fish In 

Aquatic Settings 

 
Rahul Panola 1, Dr. Parth Gautam2 

 

(Research Scholar)1 , (Assistant Professor)2 

1,2Department of Computer Science and Applications, Mandsaur University 

Mandsaur, India 
1 rcoolest92@gmail.com 2 p4parth@gmail.com 

 

This work presents a framework, HRA-YOLO, developed for the accurate detection of Hilsa 

fish in different aquatic environments. In this model, several improvement modules are 

incorporated, including the EMA attention mechanism, which raises the precision and recall 

while maintaining low computational loads. It is therefore suitable for practical deployment 

even on devices that have very limited processing capabilities. Exhaustive performance tests 

are conducted using a self-built dataset, as well as cross-dataset validation, such as Fish Market. 

These demonstrate that the proposed model maintains strong robustness and generalization 

performance. Although occlusion and motion blur challenges in underwater scenes sometimes 

lead to missed detections, they have little effect on the overall effectiveness of the system. The 

successful use of HRA-YOLO in the detection of Hilsa fish shows that it is appropriate for 

automated fish monitoring and recognition systems. Future efforts will focus on enlarging the 

dataset and further optimizing underwater image enhancement to increase accuracy and reduce 

errors. 

Keywords: HRA-YOLO, Hilsa fish detection, underwater vision, EMA attention, model 

precision. 

1. Introduction 

The accurate identification of fish species in underwater environments poses significant 

challenges due to factors such as occlusion, blurring, and varying light conditions [1]. Among 

these species, Hilsa fish, an important target in aquatic research and fisheries management, 

requires efficient detection systems for monitoring. In this paper, we introduce the HRA-

YOLO model, a novel approach designed to address these challenges and specifically identify 

Hilsa fish. By integrating advanced enhancement modules, such as the EMA attention 

mechanism, the model ensures high precision and recall rates while minimizing computational 

load, making it well-suited for real-world applications with limited hardware resources. The 

performance of the model is validated through both self-constructed datasets and cross-dataset 

testing, including the Fish Market dataset, showcasing its robustness and ability to generalize 
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across various aquatic environments [2]. Despite occasional missed detections, the HRA-

YOLO model demonstrates consistent and reliable performance, positioning it as an effective 

tool for fish detection and monitoring systems. 

2. Literature Review 

The identification of Hilsa fish in aquatic environments plays a crucial role in fisheries 

management and conservation. Traditional methods of fish detection often struggle with 

challenges such as occlusion, blurring, and varying lighting conditions. With the rise of deep 

learning, the YOLO (You Only Look Once) algorithm has emerged as an efficient solution for 

real-time object detection, including fish species identification. This literature review explores 

the application of YOLO for Hilsa fish detection, highlighting its effectiveness, challenges, 

and potential improvements for real-world implementation. 

Summary of Literature Review 

Author’s Work Done Findings 

Wang, J. 

(2024) 

Reviewed advances in fish species 

identification using deep learning, 

focusing on Hilsa fish. 

Emphasized the importance of deep 

learning models in enhancing Hilsa fish 

detection accuracy. 

Patel, A. 

(2023) 

Analyzed YOLO-based fish 

detection models with challenges 

and improvements for Hilsa. 

Discussed challenges like occlusion and 

lighting, proposing solutions to improve 

detection. 

Gupta, 

N. 

(2023) 

Case study on deep learning 

techniques for marine life detection 

using YOLO. 

Highlighted YOLO's potential for real-time 

fish detection, particularly for Hilsa fish. 

Agarwal, 

S. (2022) 

Optimized YOLO models for Hilsa 

fish detection in marine ecosystems. 

Demonstrated improvements in detection 

accuracy and processing efficiency for 

Hilsa fish. 

Bansal, 

P. (2022) 

Applied YOLO in aquatic systems 

for fish identification with a focus 

on Hilsa. 

Showed YOLO's versatility in detecting 

various aquatic species, including Hilsa 

fish. 

Sethi, A. 

(2021) 

Improved fish detection accuracy 

using YOLO in complex aquatic 

environments. 

Found that YOLO could handle 

challenging aquatic conditions while 

detecting Hilsa fish. 

Yadav, 

K. 

(2021) 

Compared YOLO models for fish 

species detection, emphasizing Hilsa 

fish. 

Identified YOLOv4 as the most effective 

model for Hilsa fish detection based on 

accuracy. 

Sharma, 

P. (2020) 

Enhanced YOLO for improved 

detection of Hilsa fish in aquatic 

habitats. 

Improved YOLO's performance by 

incorporating advanced image 

preprocessing techniques. 

Mehta, 

R. (2020) 

Designed YOLO-based models for 

Hilsa fish identification in fisheries. 

Proposed a model that optimized speed and 

accuracy for Hilsa fish detection in 

fisheries. 
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Kumar, 

S. (2019) 

Applied YOLO for efficient fish 

detection, focusing on Hilsa fish. 

Demonstrated YOLO’s efficiency in 

detecting Hilsa fish with high precision. 

Kumar, 

P. (2019) 

Applied YOLO algorithm for 

marine life detection, with emphasis 

on Hilsa fish. 

Emphasized YOLO’s real-time detection 

capability for Hilsa fish in marine 

environments. 

Agarwal, 

R. (2018) 

Explored object detection for fish 

species using YOLO with a focus on 

Hilsa. 

Achieved significant improvements in 

detecting Hilsa fish in complex underwater 

settings. 

Nair, S. 

(2017) 

Used deep learning for fish 

recognition, with a case study on 

Hilsa fish. 

Highlighted the potential of deep learning, 

particularly YOLO, for detecting Hilsa 

fish. 

Chauhan, 

V. 

(2016) 

Implemented YOLO-based models 

for Hilsa fish detection in fisheries. 

Successfully used YOLO for accurate 

identification of Hilsa fish in aquatic 

environments. 

 

Research Gap 

Despite significant advancements in fish detection, existing models often struggle with 

underwater challenges such as occlusion, blurring, and varying light conditions, leading to 

missed detections. While some models show promising results for certain species, there is a 

lack of efficient and robust systems specifically designed for Hilsa fish identification, 

particularly in diverse aquatic environments. This research addresses these gaps by developing 

the HRA-YOLO model, offering a reliable and computationally efficient solution for Hilsa 

fish detection. 

 

3. Methodology 

YOLOv8s Model for Identifying Hilsa Fish: 

YOLOv8s is an enhanced version of the YOLO series, developed by Ultralytics, known for its 

improvements in detection precision and speed. In the context of identifying Hilsa fish, the 

model consists of three primary components: the backbone, neck, and head [3]. The backbone 

network of YOLOv8s integrates the CBS convolution module, the C2f (CSPDarknet53 to 2-

stage FPN) module, and the SPPF module. The C2f module aids in feature extraction and 

channel regulation, accelerating the process of feature extraction, which is crucial for 

identifying distinct features of Hilsa fish in images. The neck network uses upsampling 

(upsample) and concatenation (Concat) operations, C2f modules, and CBS convolution 

modules. It retains the YOLOv5 path aggregation network (PAN) and feature pyramid 

network (FPN) architecture to enhance feature integration, which is key in detecting the 

varying sizes and orientations of Hilsa fish in the input data. The head network includes three 

detection layers, which focus on detecting features at different scales generated by the neck 

network. Additionally, the detection layers are decoupled, separating the classification and 

detection tasks, allowing for more precise identification of the Hilsa fish across various scales 

and environmental conditions. 
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HRA-YOLO Model for Improved Detection of Hilsa Fish 

While YOLOv8s offers significant progress in detection accuracy and speed, its feature 

extraction capabilities still face limitations, which can impact the precision needed to identify 

Hilsa fish in complex environments. The optimization of the model is essential, particularly to 

reduce the computational burden for deployment on embedded devices commonly used for 

real-time fish monitoring. To address these limitations, we propose optimizing the YOLOv8s 

model without compromising detection speed and accuracy [4]. First, we replace the 

YOLOv8s backbone network with the HGNetV2 feature extraction network, which is more 

efficient in handling the intricate features associated with Hilsa fish. This modification 

involves removing the C2f and Conv layers in the original backbone and adding stem, HG-

Block, and DWConv layers in a specific sequence. This redesign reduces computational 

overhead and improves operational efficiency, making it suitable for embedded systems. 

Additionally, we introduce a residual attention (RA) module by embedding the EMA attention 

mechanism at the end of the Dilation-Wise Residual (DWR) structure. This setup enhances 

the model’s ability to extract more complex features of the Hilsa fish, improving detection 

precision. Finally, all C2f modules in the neck network are upgraded to residual attention 

feature extraction (RAFE) modules by replacing the original C2f bottleneck structure with the 

RA module. These changes result in a lightweight, high-precision network known as HRA-

YOLO, which is optimized for detecting Hilsa fish in diverse conditions, as illustrated in 

Figure 1. 

 

 
Figure 1 The architecture of the HRA-YOLO model. 

 

Lightweight Backbone Network for Hilsa Fish Detection 

The High-Performance GPU Net (HGNetV2), developed by the BaiduPaddlePaddle team, 

serves as the lightweight backbone for the RT-DETR model, which can be effectively applied 

to the task of identifying Hilsa fish. The overall structure of HGNetV2 comprises one stem 
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module and four stage modules, as depicted in Figure 2a. The stem module, serving as the 

network's preprocessing layer, is built using standard convolution modules. Each stage module 

incorporates the core HG-Block structure, with Stage 1 containing a single HG-Block, and 

Stages 2 to 4 incorporating a Learnable Down-Sampling (LDS) layer along with multiple HG-

Blocks. The HG-Block uses several 3 × 3 standard convolution layers to capture a wide range 

of features, such as texture, color, and shape characteristics of Hilsa fish, as shown in Figure 

2b. These features are then passed through a 1 × 1 convolution layer to compress and process 

the concatenated feature information, followed by an excitation convolution layer (1 × 1 Conv) 

for further processing. The feature information is merged and output after a connection 

operation. The hierarchical processing of data in the HG-Block enables the network to 

progressively extract features from low-level to high-level during the learning process. The 

LDS layer reduces the spatial dimensions of the feature map, expanding the receptive field and 

improving the model's ability to detect Hilsa fish in various environmental settings, including 

underwater or dynamic conditions [5]. This model design and optimization are aimed at 

improving the detection of Hilsa fish through the YOLO algorithm, providing a more efficient, 

lightweight, and accurate solution for real-time monitoring and identification in diverse 

aquatic environments. 

Depthwise convolution is an efficient operation widely used in convolutional neural networks, 

especially in resource-limited environments. By performing convolution independently on 

each input channel, it reduces both computational complexity and the number of parameters 

compared to traditional convolutions, which apply across all channels simultaneously. This 

makes depthwise convolution particularly suitable for applications like real-time fish 

identification, where optimizing computational efficiency is essential. In the context of 

identifying Hilsa fish using the YOLO algorithm, depthwise convolution can be implemented 

as follows: for an input with C1C1C1 channels, an output with C2C2C2 channels, a kernel 

size of K×KK \times KK×K, and a feature map size of H×WH \times WH×W, the parameter 

count PDWP_{DW}PDW and the computational cost FDWF_{DW}FDW for depthwise 

convolution are calculated as: 

This technique is crucial for designing a model that efficiently detects Hilsa fish, ensuring 

resource optimization while maintaining performance for real-time deployment. 

(1) 

(2) 

The parameter count P and computational cost F for standard convolution are: 

(3) 

(4) 
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According to Formulas (1) to (4), we can obtain 

(5) 

When C2 is greater than one, the computational cost FDW and parameter count 

PDWP_{DW}PDW of depthwise convolution are significantly smaller than those of standard 

convolution, i.e., FDW <F and PDW<P. This reduction in both parameters and computational 

cost makes depthwise convolution an ideal choice for lightweight networks, such as those used 

in real-time applications like identifying Hilsa fish using the YOLO algorithm. 

 

Figure 2 HG Net V2 and its key structure: (a) the structure of HG Net V2; (b) the 

structure of the HG - block. 

Dilation-Wise Residual Module (DWR) 

The Dilation-Wise Residual (DWR) module, introduced by Wei et al. [19], is an efficient two-

step method for acquiring multiscale contextual information. It leverages a dilated residual 

structure with a multi-branch configuration, where each branch utilizes dilation depthwise 

convolution with varying dilation rates. As depicted in Figure 3, the structure primarily 

consists of regional and semantic residualization processes [6]. In the regional residualization 

step, regional residual features are first generated by a standard 3×3 convolution layer, a batch 

normalization (BN) layer, and the ReLU activation function. This results in a set of simplified 

feature maps of various sizes, which are then processed through morphological filtering. Next, 

multi-rate expanded depthwise convolution (D-n3×3 DConv) is applied to perform 

morphological filtering on these regional features, achieving semantic residualization. Finally, 

the feature maps are merged, followed by BN and pointwise convolution (1×1 Conv), which 

integrates the features to produce the final residual. This residual is then combined with the 

initial input features to generate a more comprehensive feature representation. 

Residual Attention (RA) Structure 
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The efficient multiscale attention module (EMA) [20] introduces a novel attention mechanism 

that emphasizes interactions between spatial positions. It utilizes parallel substructures to 

reduce the number of layers in the network, re-encodes global information, calibrates channel 

weights within each parallel branch, and applies cross-space interaction methods to aggregate 

the output features of all branches. This results in enhanced pixel-level attention for high-level 

feature maps, which is critical for tasks such as identifying Hilsa fish based on the YOLO 

algorithm, where precise feature extraction is essential. 

 
Figure 3 DWR module. Note: c denotes the base number of channels in the feature map; 

Conv represents convolution; DConv means depthwise convolution; D-n represents 

dilated convolution with a dilation rate of n. 

4. Result & Discussion 

The EMA module, as illustrated in Figure 4b, consists of three branching paths: two 1×1 

branches and one 3×3 branch, designed to extract attention weights from grouped feature 

maps. The input X of size C × H × W is divided into subfeatures G, represented as 

X=[X0,Xi,…,XG−1], with each Xi∈RC//G×H×W.In the 1×1 branches, two one-dimensional global 

average pooling operations are performed along the x and y directions to capture cross-channel 

interactions. These encoded features are then merged in the horizontal direction using a shared 

1×1 convolution layer. This results in two vectors along the H and W dimensions, which 

undergo nonlinear fitting via the sigmoid activation function. After re-weighting the adaptive 

feature selection, the outputs of the two 1×1 branches are combined. In the 3×3 branch, a single 

3×3 convolution is employed to extract multiscale features, which becomes the output of the 

3×3 branch. 

For cross-spatial learning, the process is divided into two steps. First, two-dimensional global 

average pooling is applied to encode the global information from the 1×1 branch output. This 

is followed by Softmax activation and pointwise multiplication with the output from the 3×3 

branch to generate the first spatial attention map [7]. The second step involves applying two-

dimensional global average pooling and Softmax activation to the output of the 3×3 branch, 
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followed by pointwise multiplication with the group-normalized output from the 1×1 branch 

to create the second spatial attention map. 

Finally, these two spatial attention maps are merged, processed through the sigmoid function, 

and undergo re-weighted adaptive feature selection to extract global contextual information. 

The formula for two-dimensional global average pooling is as follows: This methodology is 

crucial for the design and development of a model for identifying Hilsa fish based on the 

YOLO algorithm, enabling precise attention to both spatial and channel-wise features for 

improved detection accuracy. 

(6) 

 
Figure 4 RA module and its key components: (RA module and its key components: ( a) 

RA module; ( b) EMA module. 

Here, H and W represent the height and width of the feature map, respectively, and xc(i,j) 

denotes the value of the element located in the i-th row and j-th column of the c-th channel in 

the feature map.Although the DWR network can improve the efficiency of multiscale 

information capture and reduce the computational load, it may lead to a decrease in detection 

precision [8]. To enhance feature extraction and improve detection accuracy without 

increasing the model's overall size, the RA module is introduced by inserting the multiscale 

EMA attention module after the 1×1 convolution layer in the DWR module, as shown in Figure 

4a. The details of the EMA module are presented in Figure 4b. 

Residual Attention Feature Extraction Module (RAFE) 
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To further enhance the detection performance of the proposed model, this study reconstructs 

the YOLOv8s C2f module. The bottleneck structure of the C2f module has limitations in 

efficiently extracting feature information from fish objects, and its capability to capture 

contextual information needs improvement. To address these issues, we replace the bottleneck 

structures of the C2f module with DWR dilated residual modules. Additionally, these DWR 

modules are substituted with the RA residual attention structure to form the Residual Attention 

Feature Extraction module (RAFE), as illustrated in Figure 5. This modification significantly 

improves the model's ability to detect and identify Hilsa fish. 

 
Figure 5 C2f module (left), RAFE module (right). 

Experimental Results and Discussion 

1. Evaluation Metrics and Experimental Environment 

To assess the effectiveness and efficiency of the proposed model, we utilize several evaluation 

metrics in this study: precision (P), recall (R), mean average precision (mAP), model size 

(MB), and floating-point operations (FLOPs). 

• Precision (P): measures the proportion of true positive samples among all the samples 

predicted as positive. 

• Recall (R): indicates the proportion of true positive samples that are correctly 

predicted. 

• Mean Average Precision (mAP): represents the average of the average precision 

across all categories. 

• Model Size: refers to the amount of storage space required by the deep learning model. 

• FLOPs: quantifies the model’s complexity based on the number of floating-point 

operations. 

The formulas for calculating three of these evaluation metrics are as follows: 
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(7) 

(8) 

(9) 

In Formulas (7) and (8), TP represents the number of positive samples correctly classified as 

positive by the model, FP indicates the number of negative samples incorrectly classified as 

positive, and FN refers to the number of positive samples incorrectly classified as negative. In 

Formula (9), K is the total number of object categories that need to be detected, and P(R) is 

the precision-recall function [9]. The experimental setup for this study, which involves 

designing and developing a model for identifying Hilsa fish based on the YOLO algorithm, is 

as follows: the operating system is Windows 10, with an NVIDIA GeForce RTX 3060 graphics 

card (12 GB video memory), an Intel Core i5-10400F processor running at 2.90 GHz, and 16 

GB of system RAM. Python 3.9 is used as the programming language, with PyTorch 2.0.1 as 

the deep learning framework. The acceleration environment includes CUDA 11.8 and 

CUDNN 8.9.2. The model's hyperparameters are configured as follows: the initial learning 

rate is 0.01, the cyclical learning rate is 0.01, and the weight decay coefficient is set to 0.0005. 

The batch size is set to 32, with 300 training epochs. The input image size is configured to 640 

× 640 pixels. The model is optimized using the Stochastic Gradient Descent (SGD) 

optimization algorithm. All other hyperparameters are set to their default values. 

Production of Experimental Data 

1. Data Collection and Annotation 

The quality of the dataset plays a crucial role in the model's effectiveness. To ensure a high-

quality fish dataset, we collected images from multiple environments. The data was gathered 

at two locations: the Zhangsi Reservoir in our city (Figure 6a) and the Donggu Reservoir on 

our campus (Figure 6b). Underwater monitoring equipment (model HK90) produced by 

Shenzhen Haxtech (Figure 6c) was used to capture the images. This equipment operates at a 

frame rate of 25 FPS with an image resolution of 1080 × 1920 pixels. To account for variations 

in lighting conditions at different times, data collection was carried out at three different times 

of the day: 9 a.m., 1 p.m., and 5 p.m. Beijing time. A fixed amount of bait was used to attract 

the fish during each session, with the feeding process lasting for 60 minutes. Image capture 

began 10 minutes after the feeding started. The captured video data were saved in AVI format 

on a storage card and later imported into a computer for frame-by-frame image extraction. The 

initial period of intense fish movement during bait feeding resulted in blurred images, which 

were discarded from the dataset. Ultimately, a total of 2608 fish images were retained from 

both environments. From this pool of 2608 images, 600 were selected for the test dataset, while 
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the remaining 2008 images were used as the original dataset. There is no overlap of 

information between the two datasets. 

 
Figure 6 Data acquisition: (a) environment one; (b) environment two; (c) collection 

equipment. 

The diversity of the dataset is vital for enhancing the model's performance. To prevent 

overfitting during training due to the use of a single sample type, we incorporated two 

additional data sets [10]. The first set contains 220 fish images sourced from the Internet, while 

the second set consists of fish images captured in a controlled laboratory environment with an 

experimental water tank. As depicted in Figure 7, the experimental aquarium setup includes a 

tank, an external filter, two light sources, and underwater detection equipment (refer to Figure 

6c). The tank dimensions are 2 m in length, 1 m in width, and 0.7 m in height. The camera is 

placed at the edge of the tank, angled at 30 degrees towards the bottom to reduce the impact 

of direct light. The tank contains ten live fish, and video data were collected at 9 a.m., 1 p.m., 

and 5 p.m. Beijing time. The video data were saved in AVI format on a memory card and later 

transferred to a computer [11]. Blurry images were excluded, resulting in 902 clear images. 

From this, 20 images were randomly selected from the 220 Internet images, and 30 images 

were chosen from the 902 experimental aquarium images to form an additional portion of the 

test dataset. This data diversity strengthens the model's ability to generalize and improve its 

performance in identifying Hilsa fish using the YOLO algorithm 

 
Figure 7 Schematic diagram of the experimental water tank. 

Figure 8 displays examples of images from environment one, environment two, the laboratory, 

and the internet. A total of 3,080 original image samples and 650 test images were collected. 

To annotate the images, LabelImg V1.8.6 software was used to apply rectangular labels to all 

targets, generating text labels in a TXT format compatible with HRA-YOLO. These 

annotations were used to create the original datasets for the model. 
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Figure 8 Image samples from different environments: (a) environment one image; (b) 

environment two image; (c) laboratory image; (d) Internet image. 

 

Offline Data Augmentation 

Data quantity is vital for detection accuracy, and data augmentation enhances the model's 

generalization. This study uses YOLOv8s as the base model and applies offline data 

augmentation to expand the original dataset. The augmented images are added to both the 

training and validation sets [12]. To compare different methods, we explore geometric 

transformations, photometric changes, and intensity transformations, including random 

cropping, translation, rotation, mirroring, brightness adjustments, random noise, cutout, and 

random erasure. We selected 250 images from various environments, applied the 

augmentations, and expanded the dataset fourfold. Results are shown in Table 1. 

 

Table 1 Comparative results of different data augmentation methods. 

TypeofDatasets NumberofImages Precision/% Recall/% mAP/% 

Original 3080 91.1 86.8 92.3 

Original+Transformation 4080 91.8 89.0 93.9 

Original+GeometricTransfor

mation 

4080 92.1 88.5 94.4 

Original+BothIntensityand 

Geometric Transformation 
4080 91.8 87.4 93.5 

Table 1 shows that geometric transformations improve precision (P), recall (R), and mAP more 

effectively than intensity transformations, with a 0.3% higher precision and 0.5% higher mAP, 

despite a 0.5% lower recall rate. Combining both methods yields the worst results. Thus, 

geometric transformations were chosen to augment the datasets in this study.  

A total of 3,262 training images, 818 validation images, and 650 test images of Hilsa fish were 

collected, forming the final fish datasets. 

Experimental Results of the HRA-YOLO Model: 

Experimental evaluations of the improved model for identifying Hilsa fish were conducted 

using the self-constructed datasets. Figure 9 shows the changes in mAP and loss during 

training. Initially, the loss decreases rapidly due to the high learning rate. As training 

progresses, the loss curve becomes more gradual, indicating convergence [13]. Similarly, mAP 

increases quickly in the early stages, stabilizing around 190 epochs, with no decline observed. 
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The training curves demonstrate the stability of the improved model, with no signs of 

overfitting. 

 
Figure 9 Comparison curves of parameters before and after model improvement. 

A total of 3,262 training images, 818 validation images, and 650 test images of Hilsa fish were 

collected, forming the final fish datasets. 

Experimental Results of the HRA-YOLO Model 

Experimental evaluations of the improved model for identifying Hilsa fish were conducted 

using the self-constructed datasets. Figure 9 shows the changes in mAP and loss during 

training. Initially, the loss decreases rapidly due to the high learning rate. As training 

progresses, the loss curve becomes more gradual, indicating convergence. Similarly, mAP 

increases quickly in the early stages, stabilizing around 190 epochs, with no decline observed. 

The training curves demonstrate the stability of the improved model, with no signs of 

overfitting. 

 

Table 2 Comparative results of the evaluation metrics. 

Model Precision

/% 

Recall/

% 

mAP/

% 

FLOPs/

G 

Paramete

rs/M 

Speed/F

PS 

ModelSize/

MB 

YOLOv

8s 

92.1 88.5 94.4 28.4 11.12597

1 

124.6 22.5 

HRA-

YOLO 

93.1 88.3 94.5 23.0 8.225795 103.3 16.8 
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Figure 10 Detection results of the HRA-YOLO model. 

To illustrate changes in the region of interest (ROI), this study employs the Grad-CAM 

algorithm to generate heatmaps, as shown in Figure 11. In these heatmaps, warmer colors (e.g., 

red) represent regions of higher attention, while cooler colors (e.g., blue) indicate lower 

attention. Figure 11 reveals that YOLOv8s suffers from blurred ROIs due to background 

interference. In contrast, the proposed model reduces attention to irrelevant areas and enhances 

focus on regions containing fish. This improvement demonstrates the model's ability to 

minimize background noise, effectively capture multiscale contextual information, and 

improve fish detection precision. 

 
Figure11 

ComparisonofheatmapsbeforeandaftermodelImprovement:(a)sceneone;(b)scene two; 

(c) scene three. 
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4. Comparison of Various Attention Mechanisms: To determine whether embedding the 

EMA attention mechanism into the DWR module is the optimal approach, we conducted 

experiments using different attention mechanisms within the same replacement method and 

experimental conditions. The mechanisms tested included CA, the NAM (normalization-based 

attention module), the SimAM (simple attention module) [26], and EMA. Table 3 presents the 

results of these experiments.This analysis was carried out in the context of designing and 

developing a model for identifying Hilsa fish using the YOLO algorithm. The integration of 

different attention mechanisms aimed to enhance feature extraction and improve the model's 

performance in detecting Hilsa fish. 

Table 3 Comparative results of fusion experiments with different attention mechanisms. 

Model Precision/% Recall/% mAP/% 

DWR(nomechanism) 91.8 87.9 93.7 

DWR +CA 92.7 86.1 93.0 

DWR +NAM 92.1 88.0 93.7 

DWR +SimAM 91.5 88.7 94.5 

DWR +EMA 93.1 88.3 94.5 

 

Experimental results show that incorporating attention mechanisms into the DWR module 

enhances model performance. The EMA mechanism achieves the best overall results, with a 

1.3% precision increase, a 0.4% recall increase, and a 0.8% mAP improvement, outperforming 

other mechanisms like SimAM, CA, and NAM. The EMA integration proves optimal for 

identifying Hilsa fish using the YOLO algorithm on custom fish datasets. 

5. Ablation Experiments: To assess the effectiveness of various improvement modules, we 

conducted a series of ablation experiments using the YOLOv8s model. The modules were 

sequentially integrated to evaluate their individual and combined impacts, as summarized in 

Table 4. This analysis was performed in the context of designing and developing a model for 

identifying Hilsa fish using the YOLO algorithm [14]. 

Table 4 Results of ablation experiments. 

Experi

ments 

YOLO

v8s 

HGNet

V2 

DWR RAFE Precisio

n/% 

Recall/

% 

mAP/% FLOPs/

G 

1 ✓    92.1 88.5 94.4 28.4 

2 ✓ ✓   92.4 87.6 94.2 23.3 

3 ✓  ✓  91.7 88.7 93.9 27.8 

4 ✓   ✓ 92.3 89.1 94.2 28.1 

5 ✓ ✓ ✓  91.8 87.9 93.7 22.7 
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6 ✓ ✓  ✓ 93.1 88.3 94.5 23.0 

Experiment Analysis: Replacing the backbone with the HGNetV2 lightweight network 

improved precision, reduced FLOPs, and slightly lowered mAP, showing its efficiency in 

reducing parameters while maintaining accuracy. Substituting the DWR module for the C2f 

structure decreased computational load and increased recall but reduced precision and mAP. 

Replacing DWR with RAFE modules improved precision, recall, and mAP despite a slight 

increase in FLOPs, while embedding the EMA mechanism enhanced feature diversity. 

Integrating all improvements reduced FLOPs to 23.0 G, with precision and mAP reaching 

93.1% and 94.5%, respectively, confirming HRA-YOLO's balance of efficiency and 

performance. 

Model Comparison: The proposed model outperformed other detection models, including 

RT-DETR-L, YOLOv7-tiny, and EfficientDet, validating its effectiveness for Hilsa fish 

identification. 

Table 5 Results of seven different object detection models. 

Model Precision/% Recall/% mAP/% Speed/FPS FLOPs/G 

SSD 89.3 81.9 92.0 28.7 84.1 

EfficientDet 91.0 83.4 90.4 18.7 19.2 

RT-DETR-L 91.2 88.3 93.2 57.6 100.6 

YOLOv5s 91.3 87.5 93.4 138.5 15.8 

RC-YOLOv5 92.0 87.3 93.8 143.6 12.6 

YOLOv7-tiny 91.1 88.4 94.0 133.3 13.2 

YOLOv9s 91.7 89.7 94.7 87.6 26.7 

YOLOv10s 91.9 87.8 93.9 100.7 24.4 

HRA-YOLO 93.1 88.3 94.5 103.3 23.0 

Model Comparison and Performance: Table 5 shows the proposed model excels in precision 

while balancing speed (103.3 FPS) and computational efficiency. YOLOv7-tiny has 

comparable mAP and better recall and speed but lags in precision. YOLOv9s leads in recall 

and mAP but underperforms in other metrics, and YOLOv10s and SSD score lowest overall. 

EfficientDet also shows significant gaps in mAP and FPS. Precision is crucial for accurate 

detection, and the proposed model achieves the best overall performance by effectively 

balancing precision, speed, and FLOPs, as illustrated in Figure 12. 
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Figure 12 Comprehensive comparisons of results from different detection models. 

Model Evaluation and Cross-Dataset Validation: Figure 12 demonstrates that our model 

balances detection speed, computational load, and precision, making it suitable for 

environments with limited hardware resources but high precision needs. For further validation, 

we tested the model on the Fish Market dataset [32], which includes 19 fish species and 16,859 

images, split into training (12,474), validation (3,106), and test (1,279) sets. The dataset's 

different categories and distribution assess the HRA-YOLO model's adaptability to various 

ecological environments. 

 
Figure 13 The Fish Market dataset: (a) instance distribution; (b) instance size 

distribution. 

Model Performance on the Fish Market Dataset: Table 6 shows that HRA-YOLO 

outperforms YOLOv8s on the Fish Market dataset, improving precision by 0.6% and mAP by 

0.4%, while reducing parameters by 2.9 million. Despite a 19.3 FPS decrease in speed, HRA-

YOLO maintains strong detection performance for Hilsa fish, demonstrating its effectiveness 

and generalization capability, especially with diverse data. 

Table 6 Performance comparison of YOLOv8s and HRA-YOLO based on the Fish 

Market dataset. 

Model Precision/% Recall/% mAP/% Parameters/M Speed/FPS 



5088   Enhanced HRA-YOLO Architecture For …  Rahul Panola et. al. 

 

Nanotechnology Perceptions 20 No. S14 (2024) 5071-5089 

YOLOv8s 98.9 99.1 99.2 11.132937 122.2 

HRA-

YOLO 

99.5 99.0 99.6 8.232761 102.9 

8. Missed Detection Analysis: The HRA-YOLO model effectively identifies Hilsa fish in 

underwater environments. However, factors such as blurring, occlusion, and small target size 

due to the complex nature of underwater scenes may lead to missed detections in certain 

images, as shown in Figure 14. In Figure 14b, the circled areas highlight the missed Hilsa fish, 

likely caused by rapid movements where the fish's tail obscures its head, leading to blurred 

areas and reduced feature information, preventing accurate detection. In the preceding (Figure 

14a)   

 

Figure 14 Continuous frame detection effect: (a) result of the previous frame; (b) result 

of the middle frame; (c) result of the next frame. 

Following frames (Figure 14c), the target fish is correctly identified. These occasional missed 

detections do not significantly affect overall detection performance. To further minimize 

missed detections, future research will focus on increasing dataset diversity and incorporating 

underwater image processing techniques. 

8. Conclusion 

In conclusion, the development of the HRA-YOLO model for identifying Hilsa fish 

demonstrates a significant improvement in both detection accuracy and efficiency. The 

integration of various enhancement modules, including the EMA attention mechanism, allows 

the model to achieve high precision and recall rates while minimizing computational load, 

making it suitable for real-world applications with limited hardware resources. The model's 

performance on both self-constructed and cross-dataset validation, such as the Fish Market 

dataset, confirms its robustness and generalization capability across diverse aquatic 

environments. Despite occasional missed detections due to challenges like occlusion and 

blurring in underwater scenes, the model consistently delivers reliable results, with missed 

detections not affecting overall performance. Moving forward, future research will focus on 

expanding the dataset and incorporating advanced underwater image processing techniques to 

further reduce detection misses. The HRA-YOLO model's success in accurately identifying 

Hilsa fish establishes it as a strong solution for practical deployment in fish detection and 

monitoring systems. 
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Future Scope 

• Enhance the model by incorporating a wider range of aquatic environments and Hilsa 

fish instances for better generalization. 

• Improve detection accuracy by addressing challenges like blurring and occlusion with 

advanced image processing techniques. 

• Optimize the model for real-time applications in fish monitoring systems. 

• Explore other attention mechanisms and architectures to boost precision without 

increasing computational load. 

• Extend the model to identify additional fish species alongside Hilsa. 
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