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This work presents a framework, HRA-YOLO, developed for the accurate detection of Hilsa
fish in different aquatic environments. In this model, several improvement modules are
incorporated, including the EMA attention mechanism, which raises the precision and recall
while maintaining low computational loads. It is therefore suitable for practical deployment
even on devices that have very limited processing capabilities. Exhaustive performance tests
are conducted using a self-built dataset, as well as cross-dataset validation, such as Fish Market.
These demonstrate that the proposed model maintains strong robustness and generalization
performance. Although occlusion and motion blur challenges in underwater scenes sometimes
lead to missed detections, they have little effect on the overall effectiveness of the system. The
successful use of HRA-YOLO in the detection of Hilsa fish shows that it is appropriate for
automated fish monitoring and recognition systems. Future efforts will focus on enlarging the
dataset and further optimizing underwater image enhancement to increase accuracy and reduce
errors.

Keywords: HRA-YOLO, Hilsa fish detection, underwater vision, EMA attention, model
precision.

1. Introduction

The accurate identification of fish species in underwater environments poses significant
challenges due to factors such as occlusion, blurring, and varying light conditions [1]. Among
these species, Hilsa fish, an important target in aquatic research and fisheries management,
requires efficient detection systems for monitoring. In this paper, we introduce the HRA-
YOLO model, a novel approach designed to address these challenges and specifically identify
Hilsa fish. By integrating advanced enhancement modules, such as the EMA attention
mechanism, the model ensures high precision and recall rates while minimizing computational
load, making it well-suited for real-world applications with limited hardware resources. The
performance of the model is validated through both self-constructed datasets and cross-dataset
testing, including the Fish Market dataset, showcasing its robustness and ability to generalize
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across various aquatic environments [2]. Despite occasional missed detections, the HRA-
YOLO model demonstrates consistent and reliable performance, positioning it as an effective
tool for fish detection and monitoring systems.

2. Literature Review

The identification of Hilsa fish in aquatic environments plays a crucial role in fisheries
management and conservation. Traditional methods of fish detection often struggle with
challenges such as occlusion, blurring, and varying lighting conditions. With the rise of deep
learning, the YOLO (You Only Look Once) algorithm has emerged as an efficient solution for
real-time object detection, including fish species identification. This literature review explores
the application of YOLO for Hilsa fish detection, highlighting its effectiveness, challenges,
and potential improvements for real-world implementation.

Summary of Literature Review

Author’s |Work Done Findings

Reviewed advances in fish species |Emphasized the importance of deep
Wang, J. |identification using deep learning, |learning models in enhancing Hilsa fish
(2024) focusing on Hilsa fish. detection accuracy.

Analyzed YOLO-based fish Discussed challenges like occlusion and
Patel, A. |detection models with challenges  |lighting, proposing solutions to improve
(2023) and improvements for Hilsa. detection.
Gupta, Case study on deep learning
N. techniques for marine life detection |Highlighted YOLO's potential for real-time
(2023) using YOLO. fish detection, particularly for Hilsa fish.

Demonstrated improvements in detection

Agarwal, |Optimized YOLO models for Hilsa |accuracy and processing efficiency for
S. (2022) |fish detection in marine ecosystems. | Hilsa fish.

Applied YOLO in aquatic systems |Showed YOLO's versatility in detecting
Bansal, |for fish identification with a focus |various aquatic species, including Hilsa
P. (2022) |on Hilsa. fish.

Improved fish detection accuracy | Found that YOLO could handle
Sethi, A. |using YOLO in complex aquatic challenging aquatic conditions while
(2021) environments. detecting Hilsa fish.
Yadav, |Compared YOLO models for fish |Identified YOLOv4 as the most effective
K. species detection, emphasizing Hilsa|model for Hilsa fish detection based on
(2021) fish. accuracy.

Enhanced YOLO for improved Improved YOLO's performance by
Sharma, |detection of Hilsa fish in aquatic incorporating advanced image
P. (2020) |habitats. preprocessing techniques.

Proposed a model that optimized speed and

Mehta, |Designed YOLO-based models for |accuracy for Hilsa fish detection in
R. (2020) |Hilsa fish identification in fisheries. |fisheries.
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Kumar, |Applied YOLO for efficient fish Demonstrated YOLO’s efficiency in
S. (2019) |detection, focusing on Hilsa fish. detecting Hilsa fish with high precision.

Applied YOLO algorithm for Emphasized YOLO’s real-time detection
Kumar, |marine life detection, with emphasis | capability for Hilsa fish in marine
P. (2019) |on Hilsa fish. environments.

Explored object detection for fish | Achieved significant improvements in
Agarwal, |species using YOLO with a focus on|detecting Hilsa fish in complex underwater

R. (2018) |Hilsa. settings.

Used deep learning for fish Highlighted the potential of deep learning,
Nair, S.  |recognition, with a case study on particularly YOLO, for detecting Hilsa
(2017) Hilsa fish. fish.
Chauhan, Successfully used YOLO for accurate
A% Implemented YOLO-based models |identification of Hilsa fish in aquatic

(2016) for Hilsa fish detection in fisheries. |environments.

Research Gap

Despite significant advancements in fish detection, existing models often struggle with
underwater challenges such as occlusion, blurring, and varying light conditions, leading to
missed detections. While some models show promising results for certain species, there is a
lack of efficient and robust systems specifically designed for Hilsa fish identification,
particularly in diverse aquatic environments. This research addresses these gaps by developing
the HRA-YOLO model, offering a reliable and computationally efficient solution for Hilsa
fish detection.

3. Methodology

YOLOvV8s Model for Identifying Hilsa Fish:

YOLOVSs is an enhanced version of the YOLO series, developed by Ultralytics, known for its
improvements in detection precision and speed. In the context of identifying Hilsa fish, the
model consists of three primary components: the backbone, neck, and head [3]. The backbone
network of YOLOvVSs integrates the CBS convolution module, the C2f (CSPDarknet53 to 2-
stage FPN) module, and the SPPF module. The C2f module aids in feature extraction and
channel regulation, accelerating the process of feature extraction, which is crucial for
identifying distinct features of Hilsa fish in images. The neck network uses upsampling
(upsample) and concatenation (Concat) operations, C2f modules, and CBS convolution
modules. It retains the YOLOvS5 path aggregation network (PAN) and feature pyramid
network (FPN) architecture to enhance feature integration, which is key in detecting the
varying sizes and orientations of Hilsa fish in the input data. The head network includes three
detection layers, which focus on detecting features at different scales generated by the neck
network. Additionally, the detection layers are decoupled, separating the classification and
detection tasks, allowing for more precise identification of the Hilsa fish across various scales
and environmental conditions.
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HRA-YOLO Model for Improved Detection of Hilsa Fish

While YOLOVS8s offers significant progress in detection accuracy and speed, its feature
extraction capabilities still face limitations, which can impact the precision needed to identify
Hilsa fish in complex environments. The optimization of the model is essential, particularly to
reduce the computational burden for deployment on embedded devices commonly used for
real-time fish monitoring. To address these limitations, we propose optimizing the YOLOv8s
model without compromising detection speed and accuracy [4]. First, we replace the
YOLOvV8s backbone network with the HGNetV2 feature extraction network, which is more
efficient in handling the intricate features associated with Hilsa fish. This modification
involves removing the C2f and Conv layers in the original backbone and adding stem, HG-
Block, and DWConv layers in a specific sequence. This redesign reduces computational
overhead and improves operational efficiency, making it suitable for embedded systems.
Additionally, we introduce a residual attention (RA) module by embedding the EMA attention
mechanism at the end of the Dilation-Wise Residual (DWR) structure. This setup enhances
the model’s ability to extract more complex features of the Hilsa fish, improving detection
precision. Finally, all C2f modules in the neck network are upgraded to residual attention
feature extraction (RAFE) modules by replacing the original C2f bottleneck structure with the
RA module. These changes result in a lightweight, high-precision network known as HRA-
YOLO, which is optimized for detecting Hilsa fish in diverse conditions, as illustrated in
Figure 1.
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Figure 1 The architecture of the HRA-YOLO model.

Lightweight Backbone Network for Hilsa Fish Detection

The High-Performance GPU Net (HGNetV2), developed by the BaiduPaddlePaddle team,
serves as the lightweight backbone for the RT-DETR model, which can be effectively applied
to the task of identifying Hilsa fish. The overall structure of HGNetV2 comprises one stem
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module and four stage modules, as depicted in Figure 2a. The stem module, serving as the
network's preprocessing layer, is built using standard convolution modules. Each stage module
incorporates the core HG-Block structure, with Stage 1 containing a single HG-Block, and
Stages 2 to 4 incorporating a Learnable Down-Sampling (LDS) layer along with multiple HG-
Blocks. The HG-Block uses several 3 x 3 standard convolution layers to capture a wide range
of features, such as texture, color, and shape characteristics of Hilsa fish, as shown in Figure
2b. These features are then passed through a 1 x 1 convolution layer to compress and process
the concatenated feature information, followed by an excitation convolution layer (1 x 1 Conv)
for further processing. The feature information is merged and output after a connection
operation. The hierarchical processing of data in the HG-Block enables the network to
progressively extract features from low-level to high-level during the learning process. The
LDS layer reduces the spatial dimensions of the feature map, expanding the receptive field and
improving the model's ability to detect Hilsa fish in various environmental settings, including
underwater or dynamic conditions [5]. This model design and optimization are aimed at
improving the detection of Hilsa fish through the YOLO algorithm, providing a more efficient,
lightweight, and accurate solution for real-time monitoring and identification in diverse
aquatic environments.

Depthwise convolution is an efficient operation widely used in convolutional neural networks,
especially in resource-limited environments. By performing convolution independently on
each input channel, it reduces both computational complexity and the number of parameters
compared to traditional convolutions, which apply across all channels simultaneously. This
makes depthwise convolution particularly suitable for applications like real-time fish
identification, where optimizing computational efficiency is essential. In the context of
identifying Hilsa fish using the YOLO algorithm, depthwise convolution can be implemented
as follows: for an input with C1C1C1 channels, an output with C2C2C2 channels, a kernel
size of KxXKK \times KKxK, and a feature map size of HxWH \times WHxW, the parameter
count PDWP_ {DW}PDW and the computational cost FDWF {DW}FDW for depthwise
convolution are calculated as:

This technique is crucial for designing a model that efficiently detects Hilsa fish, ensuring
resource optimization while maintaining performance for real-time deployment.

Pow =Ci; xKxK (1)
Fow=C; xHxWxKxK (2)

The parameter count P and computational cost F for standard convolution are:
P=CixCxKxK  (3)

F:CIXszH;{\Vx’KXK (4)
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According to Formulas (1) to (4), we can obtain

HENE)

Fow  Ppw 1
F

When C2 is greater than one, the computational cost FDW and parameter count
PDWP_{DW}PDW of depthwise convolution are significantly smaller than those of standard
convolution, i.e., Fpw <F and Ppw<P. This reduction in both parameters and computational
cost makes depthwise convolution an ideal choice for lightweight networks, such as those used
in real-time applications like identifying Hilsa fish using the YOLO algorithm.

L'"""" i g
. ‘ Larnen * »
\ P bl =
E -‘-‘\T:-*‘f:.'. « ....si » -
: +
H LA blaw 0 .“.\i » e
|~ Bt = N
E A l”n | I
- PR Meberem - ’ e
t 2 oS =
' R boe = |
H + —~— R
! LA bl -
5 ¢ « .....ln '
H 2 S s - J—
: * 2 2 Coasiaw :
- LA ) i +

.
-~
» .
v
-~

Figure 2 HG Net V2 and its key structure: (a) the structure of HG Net V2; (b) the
structure of the HG - block.

Dilation-Wise Residual Module (DWR)

The Dilation-Wise Residual (DWR) module, introduced by Wei et al. [19], is an efficient two-
step method for acquiring multiscale contextual information. It leverages a dilated residual
structure with a multi-branch configuration, where each branch utilizes dilation depthwise
convolution with varying dilation rates. As depicted in Figure 3, the structure primarily
consists of regional and semantic residualization processes [6]. In the regional residualization
step, regional residual features are first generated by a standard 3x3 convolution layer, a batch
normalization (BN) layer, and the ReL U activation function. This results in a set of simplified
feature maps of various sizes, which are then processed through morphological filtering. Next,
multi-rate expanded depthwise convolution (D-n3x3 DConv) is applied to perform
morphological filtering on these regional features, achieving semantic residualization. Finally,
the feature maps are merged, followed by BN and pointwise convolution (1x1 Conv), which
integrates the features to produce the final residual. This residual is then combined with the
initial input features to generate a more comprehensive feature representation.

Residual Attention (RA) Structure
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The efficient multiscale attention module (EMA) [20] introduces a novel attention mechanism
that emphasizes interactions between spatial positions. It utilizes parallel substructures to
reduce the number of layers in the network, re-encodes global information, calibrates channel
weights within each parallel branch, and applies cross-space interaction methods to aggregate
the output features of all branches. This results in enhanced pixel-level attention for high-level
feature maps, which is critical for tasks such as identifying Hilsa fish based on the YOLO
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Figure 3 DWR module. Note: ¢ denotes the base number of channels in the feature map;
Conv represents convolution; DConv means depthwise convolution; D-n represents
dilated convolution with a dilation rate of n.

4. Result & Discussion

The EMA module, as illustrated in Figure 4b, consists of three branching paths: two 1x1
branches and one 3x3 branch, designed to extract attention weights from grouped feature
maps. The input X of size C x H x W 1is divided into subfeatures G, represented as
X=[X0,Xi,...,X6-1], with each X;eR®S***W In the 1x1 branches, two one-dimensional global
average pooling operations are performed along the x and y directions to capture cross-channel
interactions. These encoded features are then merged in the horizontal direction using a shared
1x1 convolution layer. This results in two vectors along the H and W dimensions, which
undergo nonlinear fitting via the sigmoid activation function. After re-weighting the adaptive
feature selection, the outputs of the two 1x1 branches are combined. In the 3%3 branch, a single
3x3 convolution is employed to extract multiscale features, which becomes the output of the
3%3 branch.

For cross-spatial learning, the process is divided into two steps. First, two-dimensional global
average pooling is applied to encode the global information from the 1x1 branch output. This
is followed by Softmax activation and pointwise multiplication with the output from the 3x3
branch to generate the first spatial attention map [7]. The second step involves applying two-
dimensional global average pooling and Softmax activation to the output of the 3x3 branch,
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followed by pointwise multiplication with the group-normalized output from the 1x1 branch
to create the second spatial attention map.

Finally, these two spatial attention maps are merged, processed through the sigmoid function,
and undergo re-weighted adaptive feature selection to extract global contextual information.
The formula for two-dimensional global average pooling is as follows: This methodology is
crucial for the design and development of a model for identifying Hilsa fish based on the
YOLO algorithm, enabling precise attention to both spatial and channel-wise features for
improved detection accuracy.
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Figure 4 RA module and its key components: (RA module and its key components: ( a)
RA module; ( b) EMA module.

Here, H and W represent the height and width of the feature map, respectively, and xc(i,j)
denotes the value of the element located in the i-th row and j-th column of the c-th channel in
the feature map.Although the DWR network can improve the efficiency of multiscale
information capture and reduce the computational load, it may lead to a decrease in detection
precision [8]. To enhance feature extraction and improve detection accuracy without
increasing the model's overall size, the RA module is introduced by inserting the multiscale
EMA attention module after the 1x1 convolution layer in the DWR module, as shown in Figure
4a. The details of the EMA module are presented in Figure 4b.

Residual Attention Feature Extraction Module (RAFE)
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To further enhance the detection performance of the proposed model, this study reconstructs
the YOLOVSs C2f module. The bottleneck structure of the C2f module has limitations in
efficiently extracting feature information from fish objects, and its capability to capture
contextual information needs improvement. To address these issues, we replace the bottleneck
structures of the C2f module with DWR dilated residual modules. Additionally, these DWR
modules are substituted with the RA residual attention structure to form the Residual Attention
Feature Extraction module (RAFE), as illustrated in Figure 5. This modification significantly
improves the model's ability to detect and identify Hilsa fish.
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Figure 5 C2f module (left), RAFE module (right).

Experimental Results and Discussion

1. Evaluation Metrics and Experimental Environment

To assess the effectiveness and efficiency of the proposed model, we utilize several evaluation
metrics in this study: precision (P), recall (R), mean average precision (mAP), model size
(MB), and floating-point operations (FLOPs).

e Precision (P): measures the proportion of true positive samples among all the samples
predicted as positive.

¢ Recall (R): indicates the proportion of true positive samples that are correctly
predicted.

e Mean Average Precision (mAP): represents the average of the average precision
across all categories.

e Model Size: refers to the amount of storage space required by the deep learning model.

e FLOPs: quantifies the model’s complexity based on the number of floating-point
operations.

The formulas for calculating three of these evaluation metrics are as follows:
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In Formulas (7) and (8), TP represents the number of positive samples correctly classified as
positive by the model, FP indicates the number of negative samples incorrectly classified as
positive, and FN refers to the number of positive samples incorrectly classified as negative. In
Formula (9), K is the total number of object categories that need to be detected, and P(R) is
the precision-recall function [9]. The experimental setup for this study, which involves
designing and developing a model for identifying Hilsa fish based on the YOLO algorithm, is
as follows: the operating system is Windows 10, with an NVIDIA GeForce RTX 3060 graphics
card (12 GB video memory), an Intel Core 15-10400F processor running at 2.90 GHz, and 16
GB of system RAM. Python 3.9 is used as the programming language, with PyTorch 2.0.1 as
the deep learning framework. The acceleration environment includes CUDA 11.8 and
CUDNN 8.9.2. The model's hyperparameters are configured as follows: the initial learning
rate is 0.01, the cyclical learning rate is 0.01, and the weight decay coefficient is set to 0.0005.
The batch size is set to 32, with 300 training epochs. The input image size is configured to 640
x 640 pixels. The model is optimized using the Stochastic Gradient Descent (SGD)
optimization algorithm. All other hyperparameters are set to their default values.

Production of Experimental Data

1. Data Collection and Annotation

The quality of the dataset plays a crucial role in the model's effectiveness. To ensure a high-
quality fish dataset, we collected images from multiple environments. The data was gathered
at two locations: the Zhangsi Reservoir in our city (Figure 6a) and the Donggu Reservoir on
our campus (Figure 6b). Underwater monitoring equipment (model HK90) produced by
Shenzhen Haxtech (Figure 6¢) was used to capture the images. This equipment operates at a
frame rate of 25 FPS with an image resolution of 1080 x 1920 pixels. To account for variations
in lighting conditions at different times, data collection was carried out at three different times
of the day: 9 am., 1 p.m., and 5 p.m. Beijing time. A fixed amount of bait was used to attract
the fish during each session, with the feeding process lasting for 60 minutes. Image capture
began 10 minutes after the feeding started. The captured video data were saved in AVI format
on a storage card and later imported into a computer for frame-by-frame image extraction. The
initial period of intense fish movement during bait feeding resulted in blurred images, which
were discarded from the dataset. Ultimately, a total of 2608 fish images were retained from
both environments. From this pool of 2608 images, 600 were selected for the test dataset, while
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the remaining 2008 images were used as the original dataset. There is no overlap of
information between the two datasets.

()
Figure 6 Data acquisition: (a) environment one; (b) environment two; (c) collection
equipment.

(a)

The diversity of the dataset is vital for enhancing the model's performance. To prevent
overfitting during training due to the use of a single sample type, we incorporated two
additional data sets [10]. The first set contains 220 fish images sourced from the Internet, while
the second set consists of fish images captured in a controlled laboratory environment with an
experimental water tank. As depicted in Figure 7, the experimental aquarium setup includes a
tank, an external filter, two light sources, and underwater detection equipment (refer to Figure
6¢). The tank dimensions are 2 m in length, 1 m in width, and 0.7 m in height. The camera is
placed at the edge of the tank, angled at 30 degrees towards the bottom to reduce the impact
of direct light. The tank contains ten live fish, and video data were collected at 9 a.m., 1 p.m.,
and 5 p.m. Beijing time. The video data were saved in AVI format on a memory card and later
transferred to a computer [11]. Blurry images were excluded, resulting in 902 clear images.
From this, 20 images were randomly selected from the 220 Internet images, and 30 images
were chosen from the 902 experimental aquarium images to form an additional portion of the
test dataset. This data diversity strengthens the model's ability to generalize and improve its
performance in identifying Hilsa fish using the YOLO algorithm

Fivh sak fidwr

Video capuse devices

Figure 7 Schematic diagram of the experimental water tank.

Figure 8 displays examples of images from environment one, environment two, the laboratory,
and the internet. A total of 3,080 original image samples and 650 test images were collected.
To annotate the images, Labellmg V1.8.6 software was used to apply rectangular labels to all
targets, generating text labels in a TXT format compatible with HRA-YOLO. These
annotations were used to create the original datasets for the model.
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(2) (b -lju i)
Figure 8 Image samples from different environments: (a) environment one image; (b)
environment two image; (c) laboratory image; (d) Internet image.

Offline Data Augmentation

Data quantity is vital for detection accuracy, and data augmentation enhances the model's
generalization. This study uses YOLOvS8s as the base model and applies offline data
augmentation to expand the original dataset. The augmented images are added to both the
training and validation sets [12]. To compare different methods, we explore geometric
transformations, photometric changes, and intensity transformations, including random
cropping, translation, rotation, mirroring, brightness adjustments, random noise, cutout, and
random erasure. We selected 250 images from various environments, applied the
augmentations, and expanded the dataset fourfold. Results are shown in Table 1.

Table 1 Comparative results of different data augmentation methods.

TypeofDatasets Numberoflmages |Precision/% [Recall/% mAP/%
Original 3080 91.1 86.8 92.3
Original+Transformation 4080 91.8 89.0 93.9
Original+GeometricTransfor 4080 92.1 88.5 04.4
mation

OrlglnalfBothIntensﬁygnd 4080 918 7 4 935
Geometric Transformation

Table 1 shows that geometric transformations improve precision (P), recall (R), and mAP more
effectively than intensity transformations, with a 0.3% higher precision and 0.5% higher mAP,
despite a 0.5% lower recall rate. Combining both methods yields the worst results. Thus,
geometric transformations were chosen to augment the datasets in this study.

A total of 3,262 training images, 818 validation images, and 650 test images of Hilsa fish were
collected, forming the final fish datasets.

Experimental Results of the HRA-YOLO Model:

Experimental evaluations of the improved model for identifying Hilsa fish were conducted
using the self-constructed datasets. Figure 9 shows the changes in mAP and loss during
training. Initially, the loss decreases rapidly due to the high learning rate. As training
progresses, the loss curve becomes more gradual, indicating convergence [13]. Similarly, mAP
increases quickly in the early stages, stabilizing around 190 epochs, with no decline observed.
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The training curves demonstrate the stability of the improved model, with no signs of
overfitting.

S0

Epoch

Figure 9 Comparison curves of parameters before and after model improvement.

A total of 3,262 training images, 818 validation images, and 650 test images of Hilsa fish were
collected, forming the final fish datasets.

Experimental Results of the HRA-YOLO Model

Experimental evaluations of the improved model for identifying Hilsa fish were conducted
using the self-constructed datasets. Figure 9 shows the changes in mAP and loss during
training. Initially, the loss decreases rapidly due to the high learning rate. As training
progresses, the loss curve becomes more gradual, indicating convergence. Similarly, mAP
increases quickly in the early stages, stabilizing around 190 epochs, with no decline observed.
The training curves demonstrate the stability of the improved model, with no signs of
overfitting.

Table 2 Comparative results of the evaluation metrics.

Model |PrecisionRecall/ mAP/ FLOPs/| Paramete Speed/F (ModelSize/
/% % Y% G rs/M PS MB

YOLOv (92.1 88.5 94.4 28.4 11.12597 [124.6  |22.5

8s 1

HRA- [93.1 88.3 94.5 23.0 8.225795 1103.3 16.8

YOLO
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Figure 10 Detection results of the HRA-YOLO model.

To illustrate changes in the region of interest (ROI), this study employs the Grad-CAM
algorithm to generate heatmaps, as shown in Figure 11. In these heatmaps, warmer colors (e.g.,
red) represent regions of higher attention, while cooler colors (e.g., blue) indicate lower
attention. Figure 11 reveals that YOLOv8s suffers from blurred ROIs due to background
interference. In contrast, the proposed model reduces attention to irrelevant areas and enhances
focus on regions containing fish. This improvement demonstrates the model's ability to
minimize background noise, effectively capture multiscale contextual information, and
improve fish detection precision.

VAR

(a) (b)

Figurell
Comparisonofheatmapsbeforeandaftermodellmprovement:(a)sceneone;(b)scene  two;
(c) scene three.
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4. Comparison of Various Attention Mechanisms: To determine whether embedding the
EMA attention mechanism into the DWR module is the optimal approach, we conducted
experiments using different attention mechanisms within the same replacement method and
experimental conditions. The mechanisms tested included CA, the NAM (normalization-based
attention module), the SImAM (simple attention module) [26], and EMA. Table 3 presents the
results of these experiments.This analysis was carried out in the context of designing and
developing a model for identifying Hilsa fish using the YOLO algorithm. The integration of
different attention mechanisms aimed to enhance feature extraction and improve the model's
performance in detecting Hilsa fish.

Table 3 Comparative results of fusion experiments with different attention mechanisms.

Model Precision/% Recall/% mAP/%
IDWR(nomechanism) 91.8 87.9 93.7
DWR +CA 92.7 86.1 93.0
DWR +NAM 92.1 88.0 93.7
DWR +SimAM 91.5 88.7 94.5
DWR +EMA 93.1 88.3 94.5

Experimental results show that incorporating attention mechanisms into the DWR module
enhances model performance. The EMA mechanism achieves the best overall results, with a
1.3% precision increase, a 0.4% recall increase, and a 0.8% mAP improvement, outperforming
other mechanisms like SimAM, CA, and NAM. The EMA integration proves optimal for
identifying Hilsa fish using the YOLO algorithm on custom fish datasets.

5. Ablation Experiments: To assess the effectiveness of various improvement modules, we
conducted a series of ablation experiments using the YOLOv8s model. The modules were
sequentially integrated to evaluate their individual and combined impacts, as summarized in
Table 4. This analysis was performed in the context of designing and developing a model for
identifying Hilsa fish using the YOLO algorithm [14].

Table 4 Results of ablation experiments.

Experi YOLO HGNet [DWR | RAFE| Precisio [Recall/ i mAP/%| FLOPs/
ments |v8s V2 n/% % G

1 v 92.1 88.5 94.4 28.4

2 V4 v 92.4 87.6 94.2 233

3 V4 / 91.7 88.7 93.9 27.8

4 V4 V4 923 89.1 94.2 28.1

5 V4 V4 / 91.8 87.9 93.7 22.7

Nanotechnology Perceptions 20 No. $S14 (2024) 5071-5089



5086 Enhanced HRA-YOLO Architecture For ... Rahul Panola et. al.

6 v ¥ | v 931 883 945 230 |

Experiment Analysis: Replacing the backbone with the HGNetV2 lightweight network
improved precision, reduced FLOPs, and slightly lowered mAP, showing its efficiency in
reducing parameters while maintaining accuracy. Substituting the DWR module for the C2f
structure decreased computational load and increased recall but reduced precision and mAP.
Replacing DWR with RAFE modules improved precision, recall, and mAP despite a slight
increase in FLOPs, while embedding the EMA mechanism enhanced feature diversity.
Integrating all improvements reduced FLOPs to 23.0 G, with precision and mAP reaching
93.1% and 94.5%, respectively, confirming HRA-YOLO's balance of efficiency and
performance.

Model Comparison: The proposed model outperformed other detection models, including
RT-DETR-L, YOLOv7-tiny, and EfficientDet, validating its effectiveness for Hilsa fish
identification.

Table 5 Results of seven different object detection models.

Model Precision/% |Recall/% |mAP/% [Speed/FPS |[FLOPs/G
SSD 89.3 81.9 92.0 28.7 84.1
EfficientDet 91.0 83.4 90.4 18.7 19.2
RT-DETR-L 91.2 88.3 93.2 57.6 100.6
YOLOvVS5s 91.3 87.5 934 138.5 15.8
RC-YOLOvS5 [92.0 87.3 93.8 143.6 12.6
YOLOv7-tiny [91.1 88.4 94.0 133.3 13.2
YOLOvV9s 91.7 89.7 94.7 87.6 26.7
YOLOvV10s 91.9 87.8 93.9 100.7 24.4
HRA-YOLO |93.1 88.3 94.5 103.3 23.0

Model Comparison and Performance: Table 5 shows the proposed model excels in precision
while balancing speed (103.3 FPS) and computational efficiency. YOLOv7-tiny has
comparable mAP and better recall and speed but lags in precision. YOLOV9s leads in recall
and mAP but underperforms in other metrics, and YOLOv10s and SSD score lowest overall.
EfficientDet also shows significant gaps in mAP and FPS. Precision is crucial for accurate
detection, and the proposed model achieves the best overall performance by effectively
balancing precision, speed, and FLOPs, as illustrated in Figure 12.
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Figure 12 Comprehensive comparisons of results from different detection models.

Model Evaluation and Cross-Dataset Validation: Figure 12 demonstrates that our model
balances detection speed, computational load, and precision, making it suitable for
environments with limited hardware resources but high precision needs. For further validation,
we tested the model on the Fish Market dataset [32], which includes 19 fish species and 16,859
images, split into training (12,474), validation (3,106), and test (1,279) sets. The dataset's

different categories and distribution assess the HRA-YOLO model's adaptability to various
ecological environments.

Lawo

n‘u v {b)
Figure 13 The Fish Market dataset: (a) instance distribution; (b) instance size
distribution.

Model Performance on the Fish Market Dataset: Table 6 shows that HRA-YOLO
outperforms YOLOv8s on the Fish Market dataset, improving precision by 0.6% and mAP by
0.4%, while reducing parameters by 2.9 million. Despite a 19.3 FPS decrease in speed, HRA-
YOLO maintains strong detection performance for Hilsa fish, demonstrating its effectiveness
and generalization capability, especially with diverse data.

Table 6 Performance comparison of YOLOv8s and HRA-YOLO based on the Fish
Market dataset.

Model Precision/% |[Recall/% mAP/% Parameters/M [Speed/FPS
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YOLOv8s [98.9 99.1 99.2 11.132937 122.2
HRA - 99.5 99.0 99.6 8.232761 102.9
YOLO

8. Missed Detection Analysis: The HRA-YOLO model effectively identifies Hilsa fish in
underwater environments. However, factors such as blurring, occlusion, and small target size
due to the complex nature of underwater scenes may lead to missed detections in certain
images, as shown in Figure 14. In Figure 14b, the circled areas highlight the missed Hilsa fish,
likely caused by rapid movements where the fish's tail obscures its head, leading to blurred
areas and reduced feature information, preventing accurate detection. In the preceding (Figure
14a)

(b)

Figure 14 Continuous frame detection effect: (a) result of the previous frame; (b) result
of the middle frame; (c) result of the next frame.

Following frames (Figure 14c), the target fish is correctly identified. These occasional missed
detections do not significantly affect overall detection performance. To further minimize
missed detections, future research will focus on increasing dataset diversity and incorporating
underwater image processing techniques.

8. Conclusion

In conclusion, the development of the HRA-YOLO model for identifying Hilsa fish
demonstrates a significant improvement in both detection accuracy and efficiency. The
integration of various enhancement modules, including the EMA attention mechanism, allows
the model to achieve high precision and recall rates while minimizing computational load,
making it suitable for real-world applications with limited hardware resources. The model's
performance on both self-constructed and cross-dataset validation, such as the Fish Market
dataset, confirms its robustness and generalization capability across diverse aquatic
environments. Despite occasional missed detections due to challenges like occlusion and
blurring in underwater scenes, the model consistently delivers reliable results, with missed
detections not affecting overall performance. Moving forward, future research will focus on
expanding the dataset and incorporating advanced underwater image processing techniques to
further reduce detection misses. The HRA-YOLO model's success in accurately identifying
Hilsa fish establishes it as a strong solution for practical deployment in fish detection and
monitoring systems.
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Future Scope

¢ Enhance the model by incorporating a wider range of aquatic environments and Hilsa
fish instances for better generalization.

e Improve detection accuracy by addressing challenges like blurring and occlusion with
advanced image processing techniques.

e  Optimize the model for real-time applications in fish monitoring systems.

e Explore other attention mechanisms and architectures to boost precision without
increasing computational load.

o Extend the model to identify additional fish species alongside Hilsa.
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