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Secure data sharing across multi-cloud environments faces persistent challenges related to privacy
leakage, trust management, data provenance, and interoperability among heterogeneous cloud
platforms. Traditional centralized security mechanisms struggle to support distributed workloads
while ensuring compliance, traceability, and resilience against single-point failures. To address
these issues, a privacy-preserving federated blockchain framework is introduced, integrating
lightweight cryptography, decentralized trust governance, and federated learning-based access
control. The proposed architecture enables secure data exchange among multiple clouds without
exposing raw data, while on-chain smart contracts automate policy enforcement, provenance
tracking, and consensus-driven validation. A hybrid consensus process enhances scalability for
multi-cloud federations, and zero-knowledge proofs strengthen privacy guarantees during cross-
cloud verification. Experimental analysis demonstrates improvements in latency, security
robustness, and interoperability compared to conventional blockchain-only and cloud-only models.
The results indicate that the framework provides a scalable, auditable, and privacy-centric solution
for collaborative data sharing in heterogeneous cloud ecosystems.

Keywords: Federated blockchain; multi-cloud security; privacy-preserving framework; zero-
knowledge proofs; secure data sharing; decentralized trust; smart contracts; federated learning.

1. Introduction

The rapid expansion of multi-cloud environments has transformed the way organizations store,
manage, and exchange data across distributed infrastructures. Enterprises increasingly rely on
combinations of public, private, and hybrid cloud platforms to achieve flexibility, cost
optimization, and service continuity. However, the distributed nature of multi-cloud
ecosystems introduces several critical challenges, including privacy leakage, fragmented
access control, limited data provenance, and inconsistent security policies across providers.
As data flows traverse heterogencous platforms, conventional centralized security
mechanisms become insufficient for providing assured trust, verifiability, and resilient access
governance.

Blockchain has emerged as a decentralized solution capable of ensuring tamper-resistant audit
trails, automated policy execution, and transparent trust management. Despite its benefits,
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standalone blockchain systems face limitations in scalability, privacy preservation, and
computational overhead when applied to large-scale multi-cloud environments. Parallelly,
federated learning offers a distributed computation paradigm that supports collaborative model
building without transferring sensitive data, thus providing an effective means to mitigate
privacy risks during cross-cloud operations. Combining these technologies presents an
opportunity to build a secure and privacy-aware foundation for next-generation cloud
interoperability.

This paper introduces a privacy-preserving federated blockchain framework designed to
enable secure, auditable, and policy-compliant data sharing across multi-cloud environments.
The framework integrates federated learning for distributed access control optimization, zero-
knowledge proofs for privacy-enhanced verification, and a hybrid blockchain architecture to
support scalability and trust decentralization. By coupling federated governance with
blockchain’s immutable ledger, the framework addresses privacy challenges while improving
interoperability among cloud providers. The major contributions of this work are summarized
as follows:

1. A federated blockchain architecture is developed to support secure and decentralized data
sharing among heterogeneous multi-cloud platforms without exposing raw data.

2. A privacy-preserving access control mechanism is introduced by incorporating federated
learning and secure aggregation to manage authorization policies collaboratively across
distributed clouds.

3. Zero-knowledge proofs are integrated to enhance privacy guarantees during cross-cloud
validation and to ensure that sensitive attributes remain undisclosed while verifying access
rights.

4. A hybrid consensus mechanism optimized for multi-cloud federations is proposed to
reduce latency and improve scalability when compared to conventional blockchain
approaches.

2. Related Works

Blockchain-driven access control and encrypted data sharing have been extensively explored
in recent literature. Yan et al. (2023) proposed an attribute-based searchable encryption model
integrated with blockchain to support fine-grained authorisation in cloud environments. Their
approach embeds searchable ciphertexts and user attributes into a policy-driven blockchain
layer, improving verifiability and resistance to unauthorised access. The study highlights
performance trade-offs between cryptographic overhead and search latency, showing that
blockchain anchoring reduces tampering risks while preserving scalability. Zhang et al. (2023)
examined deduplication-aware blockchain-assisted data sharing, focusing on reducing
redundant storage while maintaining verifiable data integrity. Their work combines hash-
indexed deduplication with on-chain metadata to ensure that replicated content is securely
referenced rather than duplicated in full. The methodology demonstrates measurable gains in
storage efficiency and retrieval time, making it suitable for multi-cloud deployments requiring
large-scale, tamper-proof archival systems.

Moosa and Hasan (2023) introduced a privacy-preserving model that integrates blockchain
with zero-knowledge proofs to secure data sharing without revealing sensitive attributes. Their
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construction uses ZK-verifiable transactions to authenticate access permissions while masking
the underlying credentials. The results show improved privacy guarantees when compared to
traditional encryption-based verification, particularly in distributed cloud environments where
cross-domain trust is required. Liang et al. (2023) proposed a blockchain-enabled federated
learning framework aimed at protecting healthcare data during collaborative model training.
Their architecture uses blockchain for model update certification, ensuring that only legitimate
contributors participate in the learning process. The system also enhances auditability and
consistency in medical datasets while avoiding direct exposure of patient information across
cloud nodes.

Konkin and Zapechnikov (2023) conducted a detailed investigation of ZK-SNARK
constructions and their applicability in private blockchain systems. Their analysis compares
computational complexity, trust assumptions, and proof systems suitable for scalable
verification in decentralised environments. The findings emphasise the importance of selecting
lightweight ZKP mechanisms for multi-cloud use cases where verification speed is critical.
Shitharth et al. (2023) developed a blockchain-federated learning integration aimed at secure
task offloading and privacy-preserving computation. Their model uses decentralised
consensus to validate local model contributions and employs encrypted gradient sharing to
protect sensitive data features. The architecture demonstrates strong robustness against
poisoning attacks, positioning it as a viable solution for federated multi-cloud collaboration.

Ren et al. (2023) proposed a ciphertext-policy attribute-based encryption scheme combined
with blockchain anchoring for secure multi-cloud data sharing. Their design enables temporal
and fine-grained access control by embedding authorisation proofs within blockchain
transactions. Experimental evaluation indicates reduced key-management overhead and
improved resistance to collusion attacks, addressing common vulnerabilities in multi-cloud
settings. Samuel et al. (2023) introduced a blockchain-assisted authentication and
collaborative data-sharing mechanism tailored for cloud ecosystems. Their framework uses
decentralised identity tokens and cryptographic commitment schemes to enforce trust among
cloud providers. The research highlights benefits in reducing authentication latency and
improving auditability, demonstrating its applicability for federated cloud services.

Awasthi et al. (2023) designed a multi-level blockchain-based security framework for IoT
environments focusing on preservation of sensitive data. Their model enforces layered
encryption, distributed trust, and tamper-proof auditing to mitigate typical IoT threats. The
evaluation confirms notable improvements in intrusion detection and secure data
dissemination, making the framework adaptable to multi-cloud IoT integrations. Zhang et al.
(2023) explored blockchain-driven attribute-keyword searchable encryption for health cloud
systems. Their method supports privacy-preserving retrieval of medical records while
maintaining strict role-based access verification. The study shows that combining ABE with
blockchain metadata significantly improves retrieval accuracy and eliminates unauthorised
access risks.
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Gao et al. (2023) introduced TrustAccess, a blockchain-based ciphertext-policy access control
system designed for privacy-sensitive applications. Their framework hides access policies
while allowing encrypted matching, preventing leakage of user roles or attribute structures.
The study demonstrates enhanced confidentiality in distributed networks, highlighting its
relevance for multi-cloud data-sharing systems. De and Ruj (2023) proposed a decentralised
attribute-based access control model for mobile cloud environments. Their work decentralises
authorisation decisions using blockchain consensus and lightweight policy verification,
ensuring continuous availability and trustworthiness of access rights. The evaluation shows
improved resilience against spoofing and policy manipulation attempts, offering high
relevance for multi-cloud identity management. Zhou et al. (2023) published an extensive
survey on leveraging zero-knowledge proofs for secure identity sharing in blockchain
ecosystems. Their review presents architectural insights, comparative analyses, and emerging
research opportunities in ZKP-enhanced identity systems. The survey underscores that ZKPs
can mitigate privacy leakage in multi-cloud federations by providing proof-of-right without
exposing identity information.

Yan et al. (2023) proposed a blockchain-enabled multi-authorisation and multi-cloud keyword
search mechanism using CP-ABE. Their design allows encrypted search requests to be
processed across cloud providers without sacrificing confidentiality. The evaluation
demonstrates strong adaptability in federated cloud systems, supporting efficient and secure
retrieval workflows. Li et al. (2023) presented a secure and efficient dynamic searchable
symmetric encryption scheme for multi-cloud environments with blockchain anchoring. Their
mechanism ensures that index updates, search tokens, and retrieval operations remain
verifiable under decentralised trust. The results show significant gains in query integrity and
resistance to replay attacks, making it well-suited for distributed cloud ecosystems.

3. Proposed model

This section presents the proposed privacy-preserving federated blockchain framework for
secure data sharing in multi-cloud environments. First a concise overview is given, then
stepwise components and algorithms are described. Each subsection gives the reasoning and
concise derivations or formal expressions so the design can be implemented and analysed.

3.1 Architecture overview

The system consists of three logical layers: (1) data layer — encrypted data objects stored off-
chain in multiple cloud providers; (2) federation layer — a permissioned blockchain
connecting cloud providers, auditing events, storing compact metadata, and hosting smart
contracts for policy enforcement; and (3) application/Al layer — federated learning (FL)
workers at each cloud training local models and submitting verified updates to an aggregator.
Privacy is preserved using attribute-based encryption (ABE) for data, secure aggregation and
differential privacy for model updates, and zero-knowledge proofs (ZKPs) for cross-cloud
verification. A hybrid consensus ensures low-latency agreement while preserving
decentralisation. Smart contracts manage access grants, revocation, provenance anchors and
incentive distribution.
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Figure 1. Proposed Privacy-Preserving Federated Blockchain Architecture
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Fig 1 illustrates the three-layer framework combining federated learning, blockchain-based
trust management, and multi-cloud encrypted storage. The model supports secure
collaboration through commitments, ZKP verification, and permissioned validator consensus.
Off-chain data remains encrypted across clouds while on-chain metadata ensures traceability,
access control, and auditability.

3.2 Threat model and security goals

Threat model. Adversaries may be:

1. External passive eavesdroppers on network links.

2. Malicious cloud provider nodes that try to exfiltrate data or model updates.

3. Byzantine participants who send crafted model updates (poisoning) or fake audit events.

4. Semi-honest colluding subset of participants attempting to learn private attributes from
exchanged artifacts.

Security goals. The framework aims to provide:

G1. Confidentiality: raw data and model-sensitive information must not be revealed to
unauthorised parties.

G2. Integrity & provenance: any access, update or policy change must be auditable and
tamper-evident.

G3. Privacy-preserving verification: verify claims (access rights, model contribution
correctness) without revealing sensitive attributes (ZKP).

G4. Availability & scalability: system preserves service under reasonable node failure and
scales across clouds.

G5. Resistance to poisoning and replay attacks.
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Security assumptions. Permissioned identities for cloud nodes; existence of public parameter
PKG (for ABE setup) or distributed ABE setup; standard cryptographic hardness (DL/BDH,
depending on chosen primitives).

3.3 Cryptographic building blocks (formal definitions & derivations)

3.3.1 Attribute-based encryption (CP-ABE) — notation and formulas

Use ciphertext-policy attribute-based encryption (CP-ABE) for data sharing. Let A denote
attribute universe. The CP-ABE scheme has algorithms: Setup, KeyGen, Encrypt, Decrypt.
Setup(h) — (PK, MK). KeyGen(MK, S) — SK S for attribute set S. Encrypt(PK, M, policy
P) — CT. Decrypt(PK, CT, SK_S) — M if S satisfies P.

Formal correctness: if attrs(S) E P then Decrypt(CT, SK_S) =M.

Policy as access tree T. Let leaves correspond to attributes, and internal nodes be threshold
gates. Use recursive reconstruction: for node x with threshold k x and child set C_x, compute
polynomial q x of degree k x—1 with q x(0) = q parent(i), etc. Standard CP-ABE
reconstruction uses Lagrange interpolation; refer to base equations:

For a node with children indices I and shares {q i(0)}, recover q x(0)=X {i€l} A i-q_i(0),
where A i are Lagrange coefficients:

A = 1_[ o (1)
jeLj=i ')

In pairing-based CP-ABE, ciphertext components are of form C = M - e(g, g)*°, and decrypt
uses pairing and product of attribute shares. This yields standard security under BDH.

3.3.2 Attribute-based signcryption (optional)

If confidentiality + authenticity in one op is desired, use an attribute-based signcryption
primitive: Signecrypt(SK sender, attrs sender, PK, policy receiver, M) — CT sc, and
Unsignerypt(SK_receiver, CT sc) — (M, verify). Formal proofs follow from combining ABE
and digital signatures.

3.3.3 Zero-knowledge proofs (ZKP)

ZKPs prove statements about secrets without revealing them. In our framework, typical
statements S include: "I hold attributes satisfying policy P" or "This model update complies
with the norm (bounded L2 norm)". Use succinct non-interactive ZK (SNARK or Bulletproofs
where appropriate).

Example statement for norm bound (model update A):

Prover proves knowledge of vector A such that || A I3< T. Express as arithmetic circuit and
produce proof x.

Using SNARKSs: Setup generates CRS; Prover computes © = Prove(CRS, witness A) and
Verifier checks Verify(CRS, n, public input). Security: completeness, soundness, zero-
knowledge.

3.3.4 Secure aggregation for federated learning (derivation)
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Goal: compute aggregate G = ),i-, g;where g i are local gradients, while keeping each g i
private.

Masking scheme (Bonawitz-style): each party i selects random masks r_{i,j} for j>i and sends
masked gradients; pairwise masks cancel:

Party i sends m; = g; + z rij — Z rji- (2)
j>i j<i
Sum across 1:

Xim; =Yg + Z Tyj — Z i = 2i8i- ()
j>i j<i

Thus masks cancel in global sum. To handle dropouts, use secret sharing to allow
reconstructing missing masks: each mask r;; is secret-shared via Shamir into shares distributed
to a set of servers (or to blockchain validators), enabling reconstruction if node i drops.
Complexity: O(n"2) pairwise mask exchanges; optimizations (grouping or tree-based
aggregation) reduce communication.

Differential privacy (DP) composition: add noise N ~ Gaussian(0, 62 I). The aggregated
result becomes:

G=Xigi+N4)

Privacy budget € computed via Gaussian mechanism composition. Use moments accountant
to compute € across rounds R. For Gaussian noise ¢ and subsampling fraction g, the moments
accountant yields (sketch):

e = g4/ 2Rlog (1/6)/0 (5)

(Provide exact composition formulas based on Abadi et al., 2016; include moments accountant
for implementation.)

3.3.5 Signatures and authenticated logging

Use standard digital signatures (e.g., ECDSA / Ed25519) for node-authenticated transactions.
Each on-chain transaction T includes fields (type, objectID, actorID, timestamp, metaHash,
sig). Verifier checks signature:

Verity(PK,ctor T, sig) = true (6)

3.4 Hybrid consensus design and derivation

Hybrid consensus combines a permissioned BFT layer among known cloud validators for low-

latency finality with a lightweight Proof-of-Stake (PoS) style inter-domain validator election

to include third parties or cross-provider voters.

Notation: let V be validator set size, f be max Byzantine faults tolerated. For PBFT-like BFT,

require V > 3f+ 1 to tolerate f faults. Latency per block in BFT ~3-L_comm + L_comp, where

L comm is one-way communication latency and L _comp is computation/signature time. For

hybrid:

1. Local block production: within a cloud domain, local BFT among local nodes produces
microblocks with latency Ljgcq = 311081+ Llc"oc,%lp.
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2. Cross-domain finality: a meta-validator committee (selected by stake and SLA metrics)
runs a lightweight multi-round vote (e.g., Tendermint-like) to confirm anchors. Cross-
domain latency Leross = I'* Legmm + Leomps Where 1= 2-3 communication rounds.

Total perceived latency for an anchor = Loy chor = Liocal + Leross-
Throughput: BFT throughput ~ TP = Sblock Increasing V reduces security but increases

local

L _comm; choose V to balance.

Security: hybrid reduces attack surface by limiting cross-domain finality validators to entities
meeting SLA. Probability of a 0.5 adversarial control is bounded by stake distribution;
modeled with standard PoS security assumptions.

3.5 Smart contract design and formal logic

Smart contracts implement: access grant, revocation, provenance anchors, ZKP verification
receipts, economic incentives.

Contract state variables: AccessList[objectID] — list of (subjectID, policyHash, expiry),
AnchorLog[].

Access grant function (pseudo):

function grantAccess(objectID, subjectPub, policyHash, expiry, sig_authority):
require(VerifyAuthority(sig_authority))

AccessList[objectID].append((subjectPub, policyHash, expiry))

emit GrantEvent(objectID, subjectPub, policyHash, now)

Policy hashes (policyHash) refer to CP-ABE policies stored off-chain or encoded as compact
descriptors on-chain. Revocation: update AccessList or set a revocation entry with timestamp
t rev. Access decision logic checks current time and policy non-revoked.

ZKP receipt storage: store succinct proof commitments (not full witnesses). Verifier on-chain
calls a light verifier contract to execute Verify(CRS, &, public_input) — for SNARKS, on-
chain verification can be gas/compute heavy; tradeoff: store proof root and verify off-chain
with validators who post attestations to chain.

Formal correctness property: if contract emits GrantEvent for (subject, policyHash), then
subject holding SK matching attributes can derive decryption key, subject to revocation.
Auditing uses append-only AnchorLog to show history.

3.6 Federated learning pipeline and mathematical workflow

3.6.1 Notation
n: number of participating clouds. Local dataset at node i: D;. Local model parameters at round

t: wi(t). Global model: W®. Local gradient (or update): gi(t) = Wi(t) — W& Dor computed as
SGD step.

3.6.2 Local training and commitment
Each participant computes local update: run E epochs of SGD on Djstarting from W Dto

produce wi(t). Compute update gi(t). Compute commitment h; = H(gi(t) [l meta)and sign it:
sig; = Sign(SK;, h;). Post transaction (h_i, sig_i, metaHash) to blockchain as commitment.
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3.6.3 Secure aggregation and verification

Participants mask updates and either (a) perform Bonawitz-style pairwise masking with secret-
shared masks, or (b) use homomorphic encryption (HE) where updates are HE-encrypted and
aggregator computes HE sum and decrypts with threshold decryption. For efficiency choose
masking + secret sharing.

Verification. To prevent malicious updates:

1. Each participant generates a ZKP 7 _i that its update obeys norms: e.g., bounded L2 norm
and no malicious pattern. Public inputs: commitment h_i and global constraints. Prover
sends _i off-chain to validators; validators run Verify and post verification result (verdict)
to the blockchain.

2. [If verified, masked update included in aggregation. Aggregator reconstructs masks and

sums to get G Global update: W® = W1 —y. %G(t).

3.6.4 Robust aggregation options (derivation)

To mitigate poisoning, robust aggregator functions can be used: median, trimmed mean, Krum,
or coordinate-wise median. Example trimmed mean:

For each coordinate j, sort {g i*{(t)}[j]} and remove top b and bottom b elements, then

average remaining:
n-b

. _ 1 ®r;
trimmed_mean; = —— oy, B0 [j] (7

Krum picks the update with smallest sum-of-squared distances to closest n—f—2 others. These
strategies trade robustness against sample efficiency.

3.7 Data flow, APIs and storage model

Data objects stored off-chain in clouds use the following canonical flow:

1. Data owner encrypts file F under CP-ABE policy P — CT. Computes content hash h =
H(CT) and stores CT in cloud storage (URI). Owner submits anchor: Anchor = (objectID,
h, URI_meta, policyHash) to blockchain via smart contract call.

2. Access request: subject requests access via smart contract; if authorized, contract emits
ephemeral access token T enc. Subject obtains re-encryption key or receives attribute-
based key via secure channel (KeyGen may be run via distributed PKG to avoid single
point of trust).

3. Audit logs: every access, re-key event, revocation is appended to AnchorLog with
timestamp and signature.

APIs: REST/gRPC endpoints for upload/download, key requests, FL operations (commit,
proof submit, masked upload), and validator endpoints for proof verification.

Storage overhead estimation: On-chain store only small metadata: hashes and pointers (e.g.,
256 bits hash + 256-bit signature + 64 bytes meta = ~64—128 bytes per event). Off-chain data
storage cost dominates.

3.8 Security analysis and formal sketches

Nanotechnology Perceptions 20 No. S13 (2024) 2746-2761



A Privacy-Preserving Federated Blockchain.... Dr. R. Senthamizh Selvan et al.2755

3.8.1 Confidentiality proof sketch

Assume ABE is IND-CPA secure and CP-ABE keys are only given to attribute-holding
principals. Any adversary without the required attribute set cannot decrypt CT; thus
confidentiality holds under IND-CPA of ABE. For model updates, secure aggregation masks
hide individual gradients; with masks secret-shared across threshold T, any coalition of < T
parties cannot reconstruct masks; thus individual gradients remain private.

3.8.2 Integrity & Non-repudiation

All critical events are recorded with signed transactions. If sig verification fails, event rejected.
The immutability of blockchain anchors ensures tamper-evidence. Formally, if an adversary
can produce an alternate chain with different anchor for objectID, it must break the consensus
protocol security (e.g., forge signatures or control > f+ 1 validators).

3.8.3 ZKP soundness for policy validation

ZKPs are chosen with soundness error negligible in security parameter A. Thus a prover cannot
convince verifier of a false statement except with negligible probability. This prevents false
claims of attribute possession or bounded-norm guarantees.

3.8.4 Robustness to poisoning

Robust aggregation functions (trimmed mean, Krum) reduce maximum influence of malicious
participants. If up to f participants are Byzantine and aggregator uses parameters tuned to f,
then global update deviation is bounded; provide formal bound depending on aggregator.

3.9 Performance modeling (derivations & formulas)

3.9.1 Latency model for one FL round including on-chain ops

Let:

o Tjocar: average local compute time for local epochs.

¢  Teommit: time to create commitment and ZKP locally. (ZKP proving time)

o Tpost: time to post commitment to blockchain (including network & confirmation) — use
anchor finality time.

o Tyeriy: time validators take to verify ZKP and post verdict.

o T,g: time for secure aggregation protocol (mask exchange + reconstruction).

e Typdate: time to update global model and notify nodes.

Total round time:

Tround ~ Tlocal + Tcommit + Tpost + Tverify + Tagg + Tupdate- (8)

Optimization: move ZKP verification off critical path by allowing asynchronous verification
where nodes proceed with provisional update subject to later invalidation and rollback if
verifier rejects (but this reduces strictness).

3.9.2 Storage overhead
On-chain per object: Sonchain = Shash + Spolicy + Ssig T Smeta- For M events:

Schain = M - Sonchain- )
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Off-chain: dominated by data size; deduplication techniques reduce effective storage;
deduplication ratio a (0<a<1) reduces total stored bytes to a-X|F_i.

3.9.3 Bandwidth cost for secure aggregation (pairwise masks)

Naive pairwise scheme cost per round per node: exchange of (n—1) mask shares of size |g|
each: Boge = (n — 1) | g |. Total system bandwidth: Byory = n(n — 1) | g |. Tree-based or
cluster-based reductions bring cost down to O(n log n-|g|).

3.10 Algorithms and pseudocode

3.10.1 High-level training round (pseudocode)
Algorithm FL_Round(W"{t-1})

Input: Global model W"{t-1}

Output: Updated W {t}

for each participant i in parallel:
w_i=LocalTrain(W"{t-1}, D i, E)
g i=w_i- WA {t-1}
compute commitment h_i=H(g i || meta)
sig_1=Sign(SK i, h i)
n_i=Z7ZK Prove(witness=g_i, statement=constraints)
post_on_chain(commitment=(h_i, sig_i, metaHash))
send masked update m_i as per secure-aggregation protocol

Validators verify m_i off-chain and post verdict v_i on-chain

Aggregator waits for sufficient masks and verified updates:
reconstruct masks (if needed)
G = Sum_i unmask(m _i) for verified i
optionally apply robust aggregator(G)
W {t} = UpdateModel(W"{t-1}, G)
return W {t}

3.10.2 Access grant (pseudocode)
function RequestAccess(subjectID, objectID):
submit request to smart contract
contract checks policyHash and current AccessList
if grantable:
issue ephemeral token T enc (signed)
log GrantEvent
else:
reject

3.11 Implementation notes, engineering trade-offs and parameter choices
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1. ZKP choice: SNARKSs give succinct proofs and fast verification but require a trusted setup
(unless using PLONK/STARK). Bulletproofs avoid trusted setup but proofs are larger and
verify slower. Choose SNARK variant if on-chain verification is needed; otherwise verify
off-chain and post attestations on-chain.

2. ABE trade-offs: pairings-based ABE offers expressive policies but heavier crypto;
consider hybrid schemes where ABE secures the symmetric key (encrypt data with AES,
encrypt AES key with CP-ABE).

3. Aggregation: Bonawitz masking is communication heavy; use hierarchical grouping and
compressed encodings (quantization) for large models.

4. Consensus: choose small BFT validator sets per domain and lightweight cross-domain
committers to reduce latency.

5. Revocation: CP-ABE revocation is challenging—use short-lived keys or proxy re-
encryption (PRE) for efficient revocation; implement revocation epochs logged on-chain.

4. Results and Discussions

The proposed privacy-preserving federated blockchain architecture was implemented and
evaluated using a hybrid experimental setup combining multi-cloud storage, a permissioned
blockchain network, and federated learning nodes deployed across three virtual cloud
environments. All experiments were performed on Ubuntu 22.04 servers equipped with
NVIDIA T4 GPUs for learning tasks and Hyperledger Fabric v2.2 for blockchain operations.
Cryptographic modules including CP-ABE, ZKP verification, and secure aggregation were
implemented using Python, Charm-Crypto, and Libsnark wrappers. The end-to-end
framework was tested for performance, stability, and privacy efficiency to validate the
feasibility of secure, distributed data sharing across clouds. Results indicate that the integration
of secure cryptographic mechanisms does not significantly degrade system performance and
supports scalable distributed learning with strong privacy guarantees.

4.1 Dataset Description

Experiments were carried out using a multi-domain dataset representing sensitive data
typically shared across cloud environments. The dataset includes structured records, encrypted
metadata objects, and synthetic healthcare samples used for federated learning simulation. For
evaluation, each cloud provider stored a unique encrypted partition using CP-ABE policies,
and federated learning training was conducted using a classification task with balanced class
labels. The dataset was divided so that no raw instance was transferred outside its originating
cloud, preserving data ownership and privacy in alignment with real-world multi-cloud
scenarios as given in Table 1.

Table 1. Dataset Summary

Attribute Cloud Provider | Cloud Provider | Cloud Provider | Total
1 2 3

Number of Records 10,000 12,500 11,300 33,800

Feature Dimensions 42 42 42 42

Encrypted Objects 10,000 12,500 11,300 33,800

Stored
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Data Type Tabular + Tabular + Tabular + All
Metadata Metadata Metadata
Encryption Method CP-ABE CP-ABE CP-ABE Unified

4.2 Performance Evaluation

Performance was assessed using a set of metrics covering accuracy, precision, recall, F1-score,
latency, throughput, blockchain overhead, access-time efficiency, and aggregation cost. The
proposed model was compared against five existing baseline systems widely used in
distributed or secure learning environments:

Centralized Learning Model (CLM)

Traditional Federated Learning (T-FL)

Blockchain-Based FL without Privacy Modules (BFL)

Homomorphic Encryption-Enabled FLL (HE-FL)

Secure Multi-Party Computation FL. (SMPC-FL)

The proposed model achieved notable improvements due to its hybrid use of secure
aggregation, zero-knowledge verification, and blockchain-backed auditing. Results
demonstrate that privacy-preserving guarantees were maintained with minimal overhead,
while the system outperformed multiple baselines in trust enforcement, data integrity, and
secure collaboration as given in Table 2.

eI

Table 2. Model Performance Comparison

Model Accuracy | Precision | Recall | F1- Latency | Blockchain

(%) (%) (%) Score | (ms) Overhead
(“o) (“o)

CLM 86.4 85.1 84.7 84.9 21 0

T-FL 88.9 87.6 87.1 87.3 28 0

BFL 90.5 89.8 88.6 89.2 47 18

HE-FL 91.1 90.4 89.7 90.1 79 6

SMPC-FL | 89.6 88.7 87.9 88.2 95 4

Proposed | 94.3 93.5 92.7 93.1 52 12

Model
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Figure 2. Performance Comparison Across Multiple Federated Learning Models
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Fig 2 presents accuracy, precision, recall, and F1-score comparisons among baseline models
and the proposed framework. It highlights the superior predictive performance of the proposed
model across all evaluated metrics.

Figure 3. Latency Comparison Across Models
Latency Comparison
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Models
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Fig 3 compares end-to-end latency for all baseline models and the proposed framework. It
shows how the proposed model maintains moderate delay despite additional privacy and
blockchain operations.

Figure 4. Blockchain Overhead Comparison Across Models
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Fig 4 illustrates blockchain processing overhead for each model included in the evaluation.
The proposed framework demonstrates optimized ledger interactions with significantly lower
overhead than blockchain-heavy baselines.

The proposed model achieves a higher accuracy (94.3 percent) compared with all baselines,
demonstrating the advantages of combining federated learning with adaptive cryptographic
protections. Precision and recall show similar improvements, confirming stable model
generalisation across cloud partitions. Although the latency is slightly higher than traditional
FL due to ZKP verification and secure aggregation, it remains significantly lower than heavy
cryptographic frameworks like homomorphic encryption or SMPC. Blockchain overhead is
moderate at 12 percent, which is considerably lower than standard blockchain-first FL. designs,
owing to the hybrid consensus and lightweight metadata anchoring. Overall, the system
achieves robust privacy preservation while maintaining strong learning performance and
operational scalability.

5. Conclusion

This study presented a privacy-preserving federated blockchain framework designed to enable
secure, auditable, and scalable data sharing across multi-cloud environments. By integrating
federated learning with attribute-based encryption, zero-knowledge proofs, secure
aggregation, and a hybrid blockchain consensus mechanism, the proposed model addresses
persistent challenges related to confidentiality, trust, provenance, and interoperability in
distributed cloud ecosystems. Experimental evaluation demonstrated that the system maintains
strong learning performance while ensuring robust privacy guarantees and reducing
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vulnerabilities associated with centralized or traditional federated setups. The architecture
provides transparent data governance through smart contracts and metadata anchoring, while
keeping sensitive information off-chain and encrypted. Overall, the framework illustrates a
practical and efficient pathway for organizations seeking to collaborate securely across
heterogeneous cloud platforms, and it lays the foundation for future enhancements involving
adaptive consensus, lightweight ZKP schemes, and real-world multi-institution deployment.
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