

An Exhaustive Ideational Exploration Of Dual Alpha Particle Emission

**G.M.Carmel Vigila Bai¹, M.Thenmozhi^{2*}(Reg.No. 22213112132015),
R.Racil Jeya Geetha³**

¹*Department of Physics, Government Arts and Science College, Konam, Nagercoil – 629 004.*

^{2,3}*Department of Physics, Nesamony Memorial Christian College, Marthandam- 629 165.*

^{1,2,3}*Affiliated to Manonmaniam Sundaranar University, Abhishekappatti, Tirunelveli-12.*

Tamil nadu, India.

^{2*}*Corresponding author Email-mthenmozhi9696@gmail.com*

Double alpha decay is an infrequent nuclear event in which an unstable atomic nucleus simultaneously emits two alpha particles of same kind, causing a notable alteration in the atomic and mass numbers of the parent nuclei. First experimental limit on the double alpha decay of ²⁰⁹Bi isotope was reported in the year 2021, as $T_{1/2} > 2.9 \times 10^{20}$ years at 90% confidence level. Recently some of the articles provided the half-life($T_{1/2}$) limit of few other isotopes in 2024. Our CYE Model has been previously utilized to study alpha(α) decay, Cluster decay, Spontaneous Fission(SF), Super Heavy Elements(SHE) and also two proton(2p) decay, recently. Again we have also used our CYE Model to study double alpha(2α) decay recently from 2022. In this work, we have explored the double alpha decay properties of radioactive nuclei with atomic number range from Z=60 to Z=93 using Cubic plus Yukawa plus Exponential Model(CYEM) with incorporating deformation effects for both parent and daughter nuclei considering the emitted fragment spherical. Multiple theoretical frameworks (with and without deformation effects) have been proposed to scrutinize the occurrence of double alpha decay from several nuclei from 1979 to till date. Our calculated values are compared with other available theoretical models, and are in good agreement with each other. Furthermore, we have studied the half-life comparison of double alpha decay and ⁸Be decay from ²²⁹Pu, ²³⁰Am, ²³²Cm, ²³⁴Bk, ²³⁶Cf, ²³⁹Es, ²⁴¹Fm, ²⁴⁵Md isotopes using our CYE Model.

Keywords: Q-value, Half-life, Double alpha Decay, Cluster decay, Deformation effects.

1. INTRODUCTION:

The structure of an atomic nucleus can be discerned through the analysis of the radiations it emits. Radioactivity is an emerging field in the domain of Nuclear Physics to apprehend the stability of an atomic nucleus and it was initially discovered by Henri Becquerel in 1896[1], and it refers to the spontaneous emission of particles and electromagnetic radiation from the nucleus of an unstable atom. An atomic nucleus spontaneously emits a single particle as well as double particles during radioactive decay. In a single alpha decay, the unstable atomic nucleus undergoes a transformation into a more stable configuration by the emission of an

alpha particle which is a helium nucleus. In 1928, Gamow [2] formulated the theory of alpha decay, and Gurney and Condon independently formulated the alpha decay theory using the basis of quantum tunneling. Concurrent liberation of dual particles from an atomic nucleus is denominated as double particle decay. Analogous to 2β , 2γ , $2p$, $2n$ decays, the double alpha decay would fascinate many nuclear physicists theoretically[3-22] and experimentally[23-26]. Double alpha decay is a captivating phenomenon in nuclear physics, where a nucleus emits two identical alpha particles simultaneously, offering unique insights into nuclear structure and stability. Initially double alpha decay was debated by Yu. Novikov in 1979[3]. V.I. Tretyak [6] has reported, for the first time, an experimental half-life limit of double alpha decay of ^{209}Bi as 2.9×10^{20} years, utilizing data obtained from an experiment conducted by de Marcillac[28]. Different experimental methods are also suggested to measure the energies of emitted alpha particles during the nuclear reaction[6]. Again numerous theoretical frameworks are advanced to investigate the phenomenon of double alpha decay from the year 1979 to still now[3-27]. Very recently[25], P. Belli et.al., reported the double alpha decay half-life limits of ^{189}Os and ^{192}Os as $T_{1/2} > 10^{20}$ years for the first time. Again the same author[26], reported, half-life limits for double alpha decay of ^{148}Nd isotope as $T_{1/2} = 2.1 \times 10^{20}$ years.

Our CYE Model has a Cubic Potential in the pre scission region connected by Coulomb plus Yukawa plus exponential potential in the post-scission region. In our previous articles[18-23] we have presented the 2α -decay half-life of various nuclei using our CYE Model in two sphere approximation. For the current research, our model has been further upgraded by incorporating deformation parameters to precise determination of double alpha decay half-lives for the parent isotopes with atomic number varying from $Z=60$ to $Z=93$. In this work we have considered the shape of parent and daughter nuclei as spheroid and keeping the emitted cluster as spherical and calculated the half-lives from the range $Z=60$ to 93. Additionally we have compared the 2α decay and ^8Be decay properties of ^{229}Pu , ^{230}Am , ^{232}Cm , ^{234}Bk , ^{236}Cf , ^{239}Es , ^{241}Fm , ^{245}Md isotopes using our CYE Model, and compared with MGLDM and Universal Decay Law.

2. METHODOLOGY

In this work, to study the properties of double alpha decay, we have used a recently developed realistic model[29] called as Cubic plus Yukawa plus Exponential Model(CYEM). Here, the zero-point vibration energy is explicitly added without violating the conservation of energy and the inertial mass coefficient dependent on the centre of mass distance.

2.1. HALF LIFE:

The half-life(in seconds) of the system is calculated using the following relation,

$$T = \frac{1.433 \times 10^{-21} (1 + \exp K)}{E_v} \quad (1)$$

where action integral K is

$$K = K_L + K_R$$

where,

$$K_L = \frac{2}{\hbar} \int_{r_a}^{r_t} \sqrt{2B_r(r)V(r)} dr \quad (2)$$

$$K_R = \frac{2}{\hbar} \int_{r_t}^{r_b} \sqrt{2B_r(r)V(r)} dr \quad (3)$$

where r_a and r_b are the two appropriate zeros of the integrand.

Here E_v is zero point vibration energy and is given by

$$E_v = \frac{\pi\hbar}{2} \left[\frac{\left[\frac{2Q}{\mu} \right]^{1/2}}{(C_1 + C_2)} \right] \quad (4)$$

C_1 and C_2 are the central radii of the fragments given by,

$$C_i = 1.18A^{\frac{1}{3}} - 0.48 \quad (i=1,2) \quad (5)$$

and $\mu = \frac{m_1 m_2}{m_1 + m_2}$ is the reduced mass.

2.2. POTENTIAL FOR THE POST-SCISSION REGION:

In this present study parent and daughter nuclei are considered as spheroid and the emitted fragment as spherical. If the parent and daughter nucleus have a deformation say quadrupole deformation only, and the Q value of the reaction is taken as the origin, then the potential for the post-scission is given by,

$$V(r) = V_c(r) + V_n(r) - V_{df}(r) - Q; \quad r \geq r_t \quad (6)$$

$V_c(r)$ is the Coulomb potential between a spheroidal daughter and spherical emitted fragment, $V_n(r)$ is the nuclear interaction energy due to finite range effects Krappe et.al. [30], $V_{df}(r)$ is the change in the nuclear interaction energy due to quadrupole deformation of the daughter nucleus.

For a prolate spheroid daughter nucleus with longer axis along the fission direction, Pik-Pichak[31]

$$V_c(r) = \frac{3}{2} \frac{Z_1 Z_2 e^2}{r} \left[\frac{1-r^2}{2} \ln \frac{\gamma+1}{\gamma-1} + \gamma \right] \quad (7)$$

For an oblate spheroid daughter nucleus with shorter axis along the fission direction

$$V_c(r) = \frac{3}{2} \frac{Z_1 Z_2 e^2}{r} [\gamma(1 + \gamma^2) \arctan \gamma^{-1} - \gamma^2] \quad (8)$$

$$\text{where } \gamma = \frac{r}{(a_2^2 - b_2^2)^{\frac{1}{2}}}$$

where a_2 and b_2 are the semi-major and minor axes of the spheroidal daughter nucleus respectively.

If the nuclei have spheroid shape, the radius vector $R(\theta)$ making an angle θ with the axis of symmetry locating sharp surface of a deformed nuclei is given by ref[31]

$$R(\theta) = R_0 [1 + \sum_{n=0}^{\infty} \sum_{m=-n}^n \beta_{nm} Y_{nm}(\theta)] \quad (9)$$

where R_0 is the radius of the equivalent spherical nucleus.

2.3. POTENTIAL FOR THE PRE-SCISSION REGION:

The potential for the pre scission region which connects the ground state and contact point is approximated by a third order polynomial in r suggested by Nix[32] having the form,

$$V(r) = -E_v + V(r_t) + \left\{ s_1 \left[\frac{r-r_i}{r_t-r_i} \right]^2 - s_2 \left[\frac{r-r_i}{r_t-r_i} \right]^3 \right\} \quad (10)$$

Where r_i is the distance between the centre of mass of two portions of the daughter and the emitted nuclei in the spheroidal parent nucleus.

If we consider spheroid deformation β_2 , then

$$R(\theta) = R_0 \left[1 + \beta_2 \left[\frac{5}{4\pi} \right]^{\frac{1}{2}} \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2} \right) \right] \quad (11)$$

If the Nilsson's hexadecapole deformation β_4 is also included in the parent deformation, then the radius becomes,

$$R(\theta) = \left[\left[1 + \beta_2 \left[\frac{5}{4\pi} \right]^{\frac{1}{2}} \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2} \right) \right] + \left[1 + \beta_4 \left[\frac{9}{4\pi} \right]^{\frac{1}{2}} \frac{1}{8} (35 \cos^4 \theta - 30 \cos^2 \theta + 3) \right] \right] \quad (12)$$

Hence the half lives of nuclei are calculated using equation no.(1)

Table-1: Logarithmic half life values of our CYE Model with other available models including deformation.

Parent nuclei	Daughter nuclei	Q _{2a} (MeV)	Log T _{1/2} (years)			
			CYEM [WOD] [23]	CYEM [WP&D] [present work]	CPPM [8]	MGLDM [8]
¹⁴⁵ Nd	¹³⁷ ₅₆ Ba ₈₁	1.4395	143.01	142.63	142.32	139.73
¹⁴⁶ Nd	¹³⁸ ₅₆ Ba ₈₂	2.4859	92.03	91.07	89.42	87.59
¹⁴⁷ Sm	¹³⁹ ₅₈ Ce ₈₁	2.8317	84.27	83.34	83.50	81.23
¹⁴⁸ Sm	¹⁴⁰ ₅₈ Ce ₈₂	3.8900	60.20	56.76	59.40	57.77
¹⁴⁹ Sm	¹⁴¹ ₅₈ Ce ₈₃	3.4473	68.87	66.510	68.10	66.18
¹⁵⁰ Sm	¹⁴² ₅₈ Ce ₈₄	2.6322	90.28	89.99	88.98	87.52
¹⁵² Sm	¹⁴⁴ ₅₈ Ce ₈₆	0.8194	224.39	222.23	221.01	220.24
¹⁵¹ Eu	¹⁴³ ₅₉ Pr ₈₄	3.5656	68.45	67.04	66.96	65.51
¹⁵³ Eu	¹⁴⁵ ₅₉ Pr ₈₆	1.4089	156.06	153.41	153.21	150.39
¹⁵² Gd	¹⁴⁴ ₆₀ Nd ₈₄	4.1912	58.82	56.42	57.77	56.28
¹⁵⁴ Gd	¹⁴⁶ ₆₀ Nd ₈₆	2.3701	104.71	103.03	100.96	98.92
¹⁵⁵ Gd	¹⁴⁷ ₆₀ Nd ₈₇	1.2270	176.78	174.69	172.68	170.54
¹⁵⁶ Dy	¹⁴⁸ ₆₂ Sm ₈₆	3.9575	66.76	65.41	62.75	60.77
¹⁵⁸ Dy	¹⁵⁰ ₆₂ Sm ₈₈	1.7940	138.59	136.72	133.96	131.70
¹⁶² Er	¹⁵⁴ ₆₄ Gd ₉₀	2.5216	109.28	107.72	104.08	101.76
¹⁶⁴ Er	¹⁵⁶ ₆₄ Gd ₉₂	1.7422	148.13	146.58	142.26	139.88
¹⁶⁶ Er	¹⁵⁸ ₆₄ Gd ₉₄	0.9137	235.62	233.38	229.97	228.75
¹⁶⁹ Tm	¹⁶¹ ₆₆ Tb ₉₅	1.3365	184.40	182.92	179.12	176.32

^{168}Yb	$^{160}_{66}\text{Dy}_{94}$	3.2410	91.01	89.73	85.76	83.30
^{170}Yb	$^{162}_{66}\text{Dy}_{96}$	2.5677	112.51	111.27	107.38	104.69
^{171}Yb	$^{163}_{66}\text{Dy}_{97}$	2.2245	127.06	125.77	121.97	119.18
^{172}Yb	$^{164}_{66}\text{Dy}_{98}$	1.8627	147.52	145.33	141.91	138.89
^{173}Yb	$^{165}_{66}\text{Dy}_{99}$	1.2116	201.68	200.48	197.15	193.96
^{174}Yb	$^{166}_{66}\text{Dy}_{100}$	0.7904	269.20	267.73	265.46	262.05
^{175}Lu	$^{167}_{67}\text{Ho}_{100}$	2.2652	127.84	126.89	123.48	120.29
^{176}Lu	$^{168}_{67}\text{Ho}_{101}$	1.8290	151.74	150.82	147.75	144.34
^{174}Hf	$^{166}_{68}\text{Er}_{98}$	4.2317	72.90	72.011	68.63	65.84
^{176}Hf	$^{168}_{68}\text{Er}_{100}$	3.5650	86.94	86.20	82.83	79.76
^{177}Hf	$^{169}_{68}\text{Er}_{101}$	3.1927	96.64	95.88	92.86	89.60
^{178}Hf	$^{170}_{68}\text{Er}_{102}$	2.8236	108.10	107.39	104.40	100.99
^{179}Hf	$^{171}_{68}\text{Er}_{103}$	2.4062	124.13	123.49	120.80	117.17
^{180}Hf	$^{172}_{68}\text{Er}_{104}$	1.8544	153.14	152.52	150.27	146.35
^{180}Ta	$^{172}_{69}\text{Tm}_{103}$	3.5917	88.31	87.871	84.94	81.46
^{181}Ta	$^{173}_{69}\text{Tm}_{104}$	2.9679	105.66	105.141	102.90	99.14
^{180}W	$^{172}_{70}\text{Yb}_{102}$	4.7695	67.17	67.141	64.04	60.68
^{182}W	$^{174}_{70}\text{Yb}_{104}$	3.8486	84.41	84.03	81.64	77.96
^{183}W	$^{175}_{70}\text{Yb}_{105}$	3.4801	93.17	92.78	90.78	86.90
^{184}W	$^{176}_{70}\text{Yb}_{106}$	2.9361	109.01	108.77	107.13	102.91
^{186}W	$^{178}_{70}\text{Yb}_{108}$	2.3370	132.49	132.29	130.98	126.51
^{185}Re	$^{177}_{71}\text{Lu}_{106}$	3.7149	89.46	89.22	87.75	83.61
^{187}Re	$^{179}_{71}\text{Lu}_{108}$	2.9926	109.46	109.29	108.22	103.75
^{184}Os	$^{176}_{72}\text{Hf}_{104}$	5.4740	60.21	59.96	57.96	54.29

¹⁶⁸ Yb	¹⁶⁰ ₆₆ Dy ₉₄	3.2410	91.01	89.73	85.76	83.30
¹⁸⁶ Os	¹⁷⁸ ₇₂ Hf ₁₀₆	4.2855	79.24	79.14	77.58	73.41
¹⁸⁷ Os	¹⁷⁹ ₇₂ Hf ₁₀₇	4.3941	77.15	77.03	75.69	71.52
¹⁸⁸ Os	¹⁸⁰ ₇₂ Hf ₁₀₈	3.7923	89.64	89.56	88.62	84.17
¹⁸⁹ Os	¹⁸¹ ₇₂ Hf ₁₀₉	3.5663	95.11	95.03	94.11	89.61
¹⁹⁰ Os	¹⁸² ₇₂ Hf ₁₁₀	2.4919	130.78	130.68	130.26	125.37
¹⁹¹ Ir	¹⁸³ ₇₃ Ta ₁₁₀	3.7342	93.01	87.337	92.61	87.88
¹⁹³ Ir	¹⁸⁵ ₇₃ Ta ₁₁₂	2.0080	158.49	152.26	158.62	153.40
¹⁹⁰ Pt	¹⁸² ₇₄ W ₁₀₈	6.0898	55.52	55.38	54.33	50.33
¹⁹² Pt	¹⁸⁴ ₇₄ W ₁₁₀	4.5671	77.58	75.54	77.30	72.71
¹⁹⁴ Pt	¹⁸⁶ ₇₄ W ₁₁₂	2.8986	119.70	119.59	119.82	114.77
¹⁹⁵ Pt	¹⁸⁷ ₇₄ W ₁₁₃	2.2633	146.97	140.57	147.42	142.23
¹⁹⁶ Pt	¹⁸⁸ ₇₄ W ₁₁₄	1.1735	237.97	237.76	239.03	233.54
¹⁹⁷ Au	¹⁸⁹ ₇₅ Re ₁₁₄	1.9895	165.55	160.28	166.61	160.87
¹⁹⁶ Hg	¹⁸⁸ ₇₆ Os ₁₁₂	4.4615	83.19	78.60	83.69	78.46
¹⁹⁸ Hg	¹⁹⁰ ₇₆ Os ₁₁₄	2.9036	124.27	119.36	125.11	119.51
¹⁹⁹ Hg	¹⁹¹ ₇₆ Os ₁₁₅	1.9993	167.88	163.01	168.95	163.18
²⁰⁰ Hg	¹⁹² ₇₆ Os ₁₁₆	1.5291	206.60	205.59	205.79	199.92
²⁰¹ Hg	¹⁹³ ₇₆ Os ₁₁₇	0.8819	296.97	291.46	281.16	281.16
²⁰³ Tl	¹⁹⁵ ₇₇ Ir ₁₁₈	1.0810	264.05	258.77	265.67	259.65
²⁰⁴ Pb	¹⁹⁶ ₇₈ Pt ₁₁₈	2.6848	137.70	133.04	138.85	133.13
²⁰⁶ Pb	¹⁹⁸ ₇₈ Pt ₁₂₀	1.2686	240.82	238.45	242.60	236.16

²⁰⁹ Bi	²⁰¹ ₇₉ Au ₁₂₂	3.2922	117.79	115.50	119.14	113.41
¹⁹¹ At	¹⁸³ ₈₁ Tl ₁₀₂	15.6012	15.50	8.018	-	4.8759
¹⁹² At	¹⁸⁴ ₈₁ Tl ₁₀₃	14.9592	17.52	10.03	-	6.7316
¹⁹³ At	¹⁸⁵ ₈₁ Tl ₁₀₄	14.8412	17.87	10.3712	-	7.0682
¹⁹⁴ At	¹⁸⁶ ₈₁ Tl ₁₀₅	14.3172	19.63	12.08	-	8.7613

¹⁹⁵ At	¹⁸⁷ ₈₁ Tl ₁₀₆	14.1252	20.28	12.72	-	9.3809
¹⁹⁴ Rn	¹⁸⁶ ₈₂ Pb ₁₀₄	15.5562	8.89	8.314	-	-
²¹⁰ Rn	²⁰² ₈₂ Pb ₁₂₀	17.7472	1.96	1.801	-	-
²¹¹ Rn	²⁰³ ₈₂ Pb ₁₂₁	15.7962	7.45	7.34	-	-
²¹⁵ Rn	²⁰⁷ ₈₂ Pb ₁₂₅	16.4332	5.39	4.368	-	-
²¹⁶ Rn	²⁰⁸ ₈₂ Pb ₁₂₆	17.1517	3.32	2.396	-	-
²¹⁷ Rn	²⁰⁹ ₈₂ Pb ₁₂₇	16.4238	5.34	4.040	-	-
²¹⁸ Rn	²¹⁰ ₈₂ Pb ₁₂₈	15.096	9.44	8.4312	-	-
²⁰⁹ Fr	²⁰¹ ₈₃ Bi ₁₁₈	18.4372	1.02	0.7672	-	-
²¹⁰ Fr	²⁰² ₈₃ Bi ₁₁₉	16.3442	6.67	6.1461	-	-
²¹¹ Fr	²⁰³ ₈₃ Bi ₁₂₀	17.5072	3.35	2.623	-	-
²¹⁵ Fr	²⁰⁷ ₈₃ Bi ₁₂₄	15.5228	9.02	7.990	-	-
²¹⁶ Fr	²⁰⁸ ₈₃ Bi ₁₂₅	16.9914	4.58	3.675	-	-
²¹⁷ Fr	²⁰⁹ ₈₃ Bi ₁₂₆	17.7238	2.55	1.279	-	-
²¹⁸ Fr	²¹⁰ ₈₃ Bi ₁₂₇	17.0011	4.48	3.087	-	-
²¹⁹ Fr	²¹¹ ₈₃ Bi ₁₂₈	15.6262	8.55	6.812	-	-
²⁰⁹ Ra	²⁰¹ ₈₄ Po ₁₁₇	20.5112	-4.99	-3.36	-	-
²¹⁰ Ra	²⁰² ₈₄ Po ₁₁₈	21.8522	-6.20	-6.39	-	-
²¹¹ Ra	²⁰³ ₈₄ Po ₁₁₉	19.6012	-2.93	-2.83	-	-
²¹⁶ Ra	²⁰⁸ ₈₄ Po ₁₂₄	15.9104	8.62	7.344	-	-
²¹⁷ Ra	²⁰⁹ ₈₄ Po ₁₂₅	17.4062	4.20	3.74	-	-
²¹⁸ Ra	²¹⁰ ₈₄ Po ₁₂₆	17.7493	3.23	2.74	-	-
²¹⁹ Ra	²¹¹ ₈₄ Po ₁₂₇	16.9767	5.30	3.835	-	-
²²⁰ Ra	²¹² ₈₄ Po ₁₂₈	15.7916	8.84	7.791	-	-
²⁰⁹ Ac	²⁰¹ ₈₅ At ₁₁₆	22.3392	-7.99	-6.22	-	-
²¹⁰ Ac	²⁰² ₈₅ At ₁₁₇	19.8052	-1.24	-1.77	-	-
²¹¹ Ac	²⁰³ ₈₅ At ₁₁₈	21.1932	-4.19	-4.34	-	-
²¹⁷ Ac	²⁰⁹ ₈₅ At ₁₂₄	16.7362	6.91	6.90	-	-
²¹⁸ Ac	²¹⁰ ₈₅ At ₁₂₅	17.9722	3.43	2.78	-	-

^{219}Ac	$^{211}_{85}\text{At}_{126}$	18.3674	2.38	1.65	-	-
^{219}Ac	$^{211}_{85}\text{At}_{126}$	18.4	2.29	0.919	-	-
^{220}Ac	$^{212}_{85}\text{At}_{127}$	17.5223	4.57	3.72	-	-
^{220}Ac	$^{212}_{85}\text{At}_{127}$	17.5	4.63	3.78	-	-
^{211}Th	$^{203}_{86}\text{Rn}_{117}$	23.3842	-8.64	-7.23	-	-
^{218}Th	$^{210}_{86}\text{Rn}_{124}$	17.1222	6.58	6.49	-	-
^{219}Th	$^{211}_{86}\text{Rn}_{125}$	18.3652	3.15	2.66	-	-
^{220}Th	$^{212}_{86}\text{Rn}_{126}$	18.4992	2.77	2.00	-	-
^{220}Th	$^{212}_{86}\text{Rn}_{126}$	18.5	2.77	1.99	-	-
^{221}Th	$^{213}_{86}\text{Rn}_{127}$	17.7862	4.61	2.976	-	-
^{221}Th	$^{213}_{86}\text{Rn}_{127}$	17.8	4.57	2.939	-	-
^{232}Th	$^{224}_{86}\text{Rn}_{138}$	8.1519	50.46	48.181	45.62	42.59

^{218}Pa	$^{210}_{87}\text{Fr}_{123}$	17.1442	7.32	6.682	-	-
^{219}Pa	$^{211}_{87}\text{Fr}_{124}$	17.8702	5.25	4.8312	-	-
^{220}Pa	$^{212}_{87}\text{Fr}_{125}$	18.9442	2.41	1.581	-	-
^{221}Pa	$^{213}_{87}\text{Fr}_{126}$	19.0742	2.05	1.3010	-	-
^{222}Pa	$^{214}_{87}\text{Fr}_{127}$	18.1682	4.33	2.695	-	-
^{222}Pa	$^{214}_{87}\text{Fr}_{127}$	18.1	4.52	2.865	-	-
^{223}Pa	$^{215}_{87}\text{Fr}_{128}$	17.1722	7.06	5.951	-	-
^{231}Pa	$^{223}_{87}\text{Fr}_{136}$	10.1922	36.46	34.28	31.68	29.01
^{219}U	$^{211}_{88}\text{Ra}_{123}$	17.6142	6.76	5.827	-	-
^{234}U	$^{226}_{88}\text{Ra}_{138}$	9.6274	41.39	33.02	35.72	32.86
^{235}U	$^{227}_{88}\text{Ra}_{139}$	8.8913	46.84	44.42	41.03	38.00
^{238}U	$^{230}_{88}\text{Ra}_{142}$	7.9416	54.84	52.35	48.73	45.53
^{220}Np	$^{212}_{89}\text{Ac}_{123}$	18.3302	5.55	4.652	-	-
^{221}Np	$^{213}_{89}\text{Ac}_{124}$	18.9192	3.97	2.901	-	-
^{222}Np	$^{214}_{89}\text{Ac}_{125}$	19.9872	1.31	0.55199	-	-
^{223}Np	$^{215}_{89}\text{Ac}_{126}$	19.7792	1.76	1.0711	-	-
^{224}Np	$^{216}_{89}\text{Ac}_{127}$	19.0322	3.56	2.066	-	-
^{225}Np	$^{217}_{89}\text{Ac}_{128}$	18.0682	6.06	4.841	-	-
^{226}Np	$^{218}_{89}\text{Ac}_{129}$	17.1202	8.73	7.5211	-	-

Figures 1-14 : Plot connecting the decay energy and Log $T_{1/2}$ of several nuclei using our CYE Model and is compared with other available models.

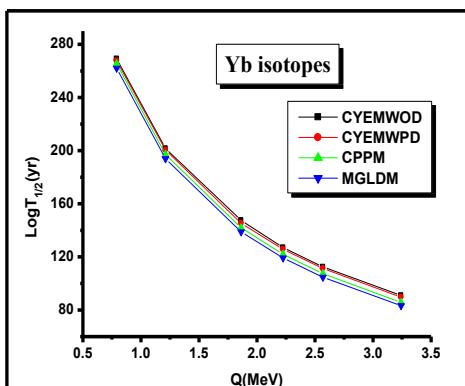


Fig.1

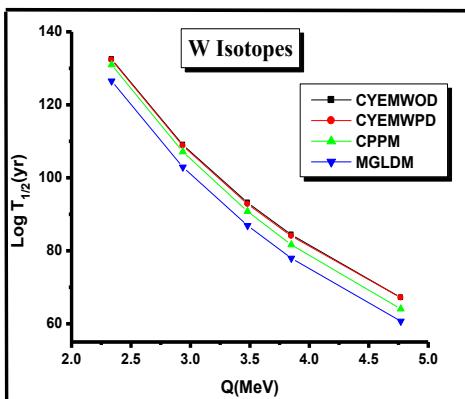


Fig.2

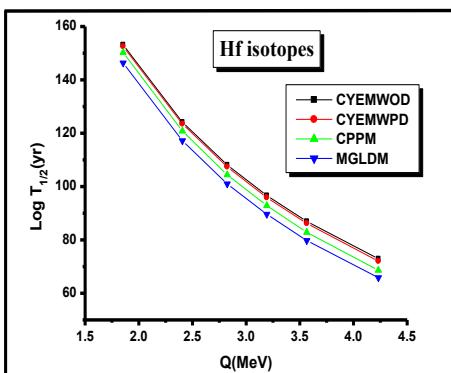
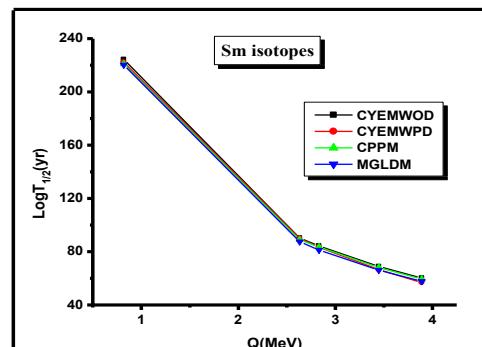



Fig.4

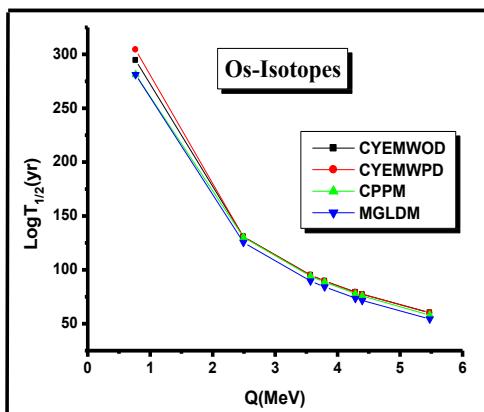


Fig.5

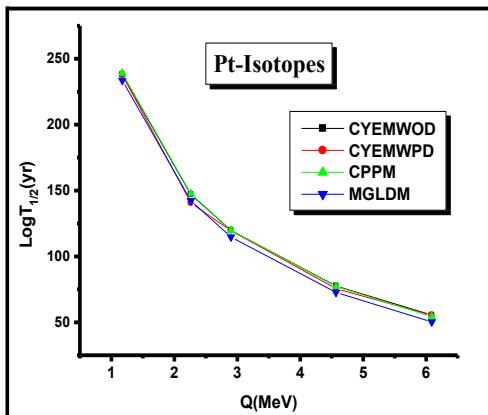


Fig.6

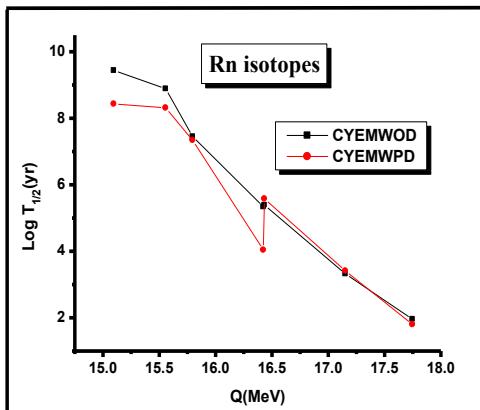


Fig.7

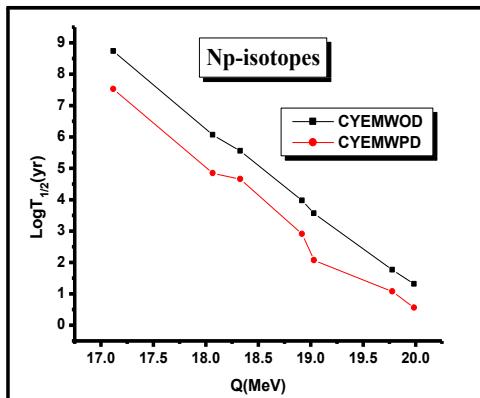


Fig.8

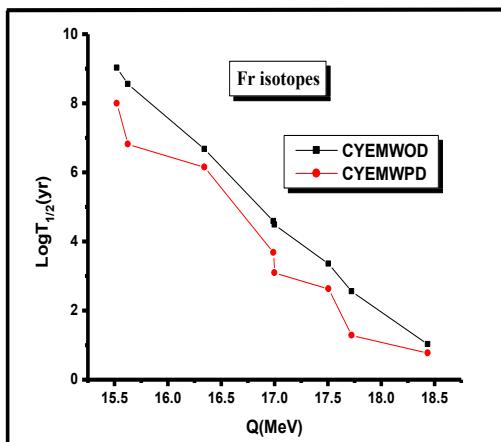


Fig.9

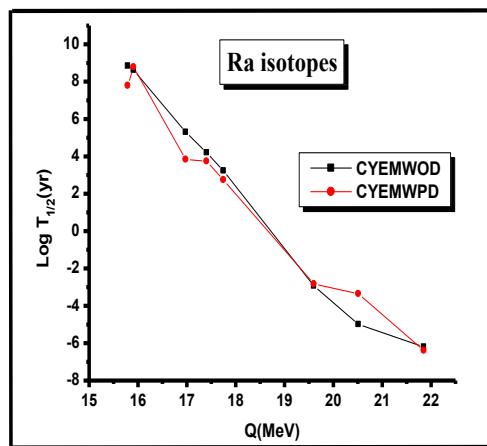


Fig.10

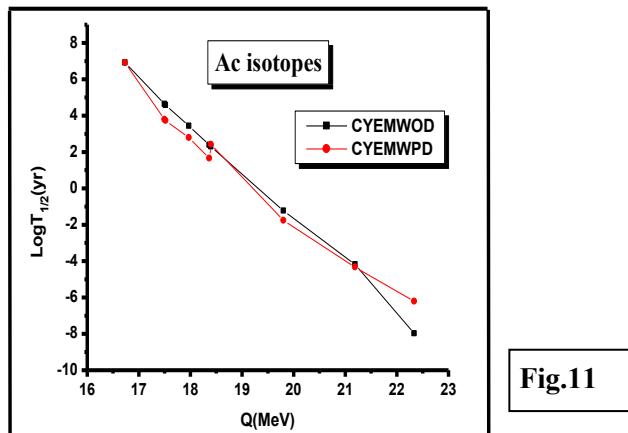


Fig.11

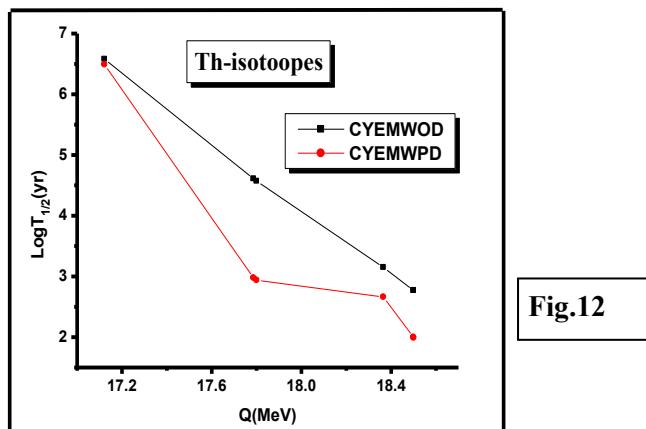


Fig.12

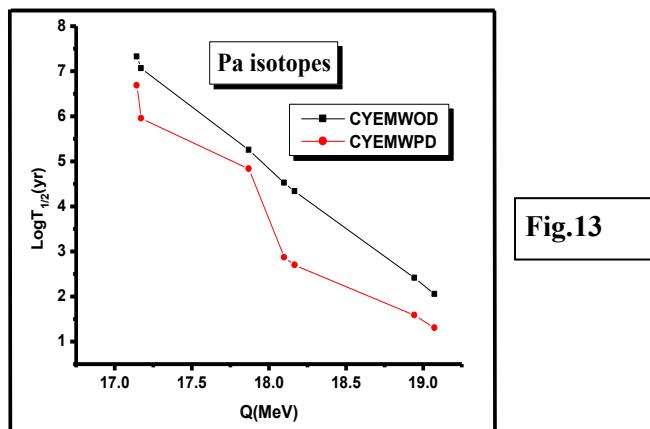


Fig.13

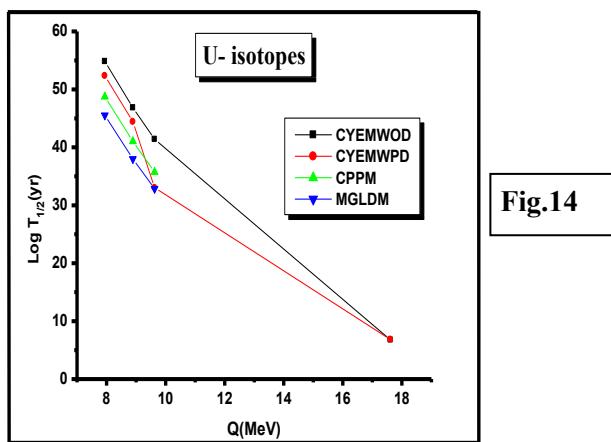
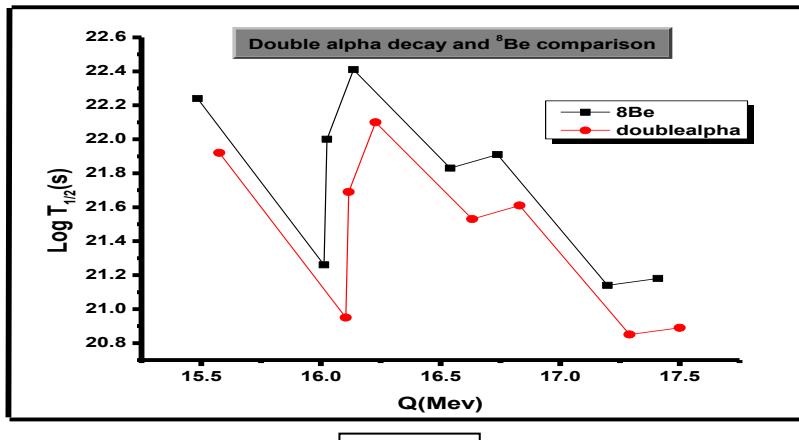



Fig.14

 Table-2: Half life comparison of 2α and ^8Be decay from various nuclei.

Parent Nuclei	Daughter nuclei	Emitted nuclei	$Q_{2\alpha}$ (MeV)	Log $T_{1/2}$ (s)		
				CYEM Calc.	MGLDM [14]	UDL [14]
^{229}Pu	^{221}Th	^8Be	15.4840	22.24	19.073	21.398
		2α	15.5759	21.92	18.765	21.102
^{230}Am	^{222}Pa	^8Be	16.0125	21.26	18.091	20.491
		2α	16.1044	20.95	17.796	20.206
^{232}Cm	^{224}U	^8Be	16.0247	22.00	18.768	21.189
		2α	16.1166	21.69	18.469	20.901
^{234}Bk	^{226}Np	^8Be	16.1360	22.41	19.120	21.274
		2α	16.2279	22.10	21.286	21.286
^{236}Cf	^{228}Pu	^8Be	16.5405	21.83	18.526	21.045
		2α	16.6324	21.53	18.235	20.764
^{239}Es	^{231}Am	^8Be	16.7381	21.91	18.563	21.133
		2α	16.8299	21.61	18.275	20.854
^{241}Fm	^{233}Cm	^8Be	17.1980	21.14	17.826	20.464
		2α	17.2899	20.85	17.547	20.193
^{245}Md	^{237}Bk	^8Be	17.4086	21.18	17.794	20.489
		2α	17.5005	20.89	17.517	20.221

Figure 15. Plot for double alpha decay and beryllium decay comparison of various isotopes using CYEM.

Fig.15

3. RESULTS AND DISCUSSIONS:

A radioactive nucleus will attempt to reach stability by ejecting nucleons (protons, neutrons) as well as other particles, or by releasing energy in the form of radiation is called radioactivity. Double alpha decay is a significant mechanism in nuclear transition and is studied for several nuclei using our CYE model[33] in two sphere approximation and also including of deformation effects. Decay energy(Q_{20}) is an important factor to determine the half-life of an atomic nuclei during nuclear decay. Table-1 shows the half life time comparison of our CYE Model in two sphere approximation, including deformation effects for both parent and daughter nuclei with Coulomb Proximity Potential Model and Modified Generalized Liquid Drop Model[8].

Figures 1-14 illustrate the plot of the calculated double alpha decay half-life versus the decay energy for the isotopes with atomic numbers ranging from 60 to 93. Nuclei with deformed structures typically have shorter half lives indicating the decay more rapidly. It should be mentioned that the parent and daughter nuclei are viewed in this study as spheroid, and keeping the emitted fragment as spherical. From the table 1, and figures it is clearly seen that the deformation parameters alter the half life of an atomic nucleus by reducing the height and width of the potential barrier. Hence, comparing our half life values CYEM(WOD) and CYEM(WP&D), it is evident that when the deformation factors include, the half life values decreases.

Moreover, we have studied the double alpha decay and beryllium decay comparison of ^{229}Pu , ^{230}Am , ^{232}Cm , ^{234}Bk , ^{236}Cf , ^{239}Es , ^{241}Fm , ^{245}Md nuclei using our CYE Model.

Table-2 illustrates a comparative analysis of the half-lives associated with double alpha decay and beryllium emission from ^{229}Pu , ^{230}Am , ^{232}Cm , ^{234}Bk , ^{236}Cf , ^{239}Es , ^{241}Fm , ^{245}Md isotopes using our model and is also compared with other available models. The logarithmic half-life (Log $T_{1/2}(\text{s})$) computations for ^{229}Pu , ^{230}Am , ^{232}Cm , ^{234}Bk , ^{236}Cf , ^{239}Es , ^{241}Fm , ^{245}Md isotopes are presented by utilizing our model in the fifth column of table-2. Columns 6 and 7 of table-2 depict the half-life values corresponding to the MGLD Model[14] and Universal Decay Law(UDL)[14] respectively. As the mass defect of ^8Be is slightly larger than the double alpha particles, slightly increased Q-value and shorter half-life for 2α than ^8Be radioactivity. The half-lives for double alpha decay are less than that of ^8Be emission and as a result double alpha decay is more probable than ^8Be emission and it is clearly observed from table-2 and from fig.15. Besides, the possibility of ^8Be emission is less since it is a weakly bound nucleus.

4. CONCLUSION:

Double alpha decay (Parent Nucleus \longrightarrow Daughter Nucleus + 2α), is studied in this work using our Cubic plus Yukawa plus Exponential Model in the atomic number range from $Z= 60$ to 93 and the results are compared with available theoretical model results, here deformation effects of parent and daughter nuclei are taken into account. Our results are in good agreement with other models. The deformation of a nucleus can significantly impact its half-life by altering the height and width of the potential barrier. From the table-1 and figures(1-14), it is seen that the half-life values are decreased because of considering deformation parameters. Thus, the nuclei with deformed structure have shorter half lives indicates decay more rapidly. Additionally, more dominant decay mode between double alpha decay and ^8Be decay is studied and the results are presented in table-2 and in fig.15, for ^{229}Pu , ^{230}Am , ^{232}Cm , ^{234}Bk , ^{236}Cf , ^{239}Es , ^{241}Fm , ^{245}Md isotopes using our CYE Model. As the mass defect of ^8Be is slightly larger than double alpha particles, the double alpha decay is more probable than ^8Be emission. The current findings provide valuable information and insights for refining theoretical models and guiding future experimental studies on double alpha decay.

References:

- [1]. H. Becquerel, C. R. de l Acad. (Paris) **122** (1896) 420.
- [2]. Gamow, g. (1928) zeits f. physik **51**, 204.
- [3]. Yu.N.Novikov, Some features of nuclei close to the boundaries of nucleon stability, in: Int. Workshop on U-400 Program.JINR (1979)p.15.
- [4]. E.E.Berlovich, Yu.N.Novikov, one- and many-nucleon radioactivity of atomic nuclei, in: B.S. Dzhelepov(Ed.), Modern Methods of Nuclear Spectroscopy 1986, Nauka, Leningrad, 1988, p.107.

[5]. D.N.Poenaru and M.Ivascu, Two alpha, three alpha and multiple heavy-ion radioactivities, *J.Physique Lett.* **46**(1985) L-591-L-594.
[<https://doi.org/10.1051/jphyslet:019850046013059100>]

[6]. V.I.Tretyak, Spontaneous double alpha decay: First experimental limit and prospects of investigation, *Nuclear Physics and Atomic Energy*, vol. **22**, issue 2, pp. 121-126(2021).
[<https://doi.org/10.15407/jnpae2021.02.1211>]

[7]. F. Mercier, J.Zhao, J.P.Ebran, E.Khan, T.Niksic, D.Vretner, Microscopic Description of 2α Decay in ^{212}Po and ^{224}Ra Isotopes, *Phys. Rev. Lett.* **127** (2021) 012501.
[<https://doi.org/10.1103/PhysRevLett.127.012501>]

[8]. K.P.Santhosh and Tinu Ann Jose, Theoretical investigation on double- α decay from radioactive nuclei, *Physical Review C* **104**, 064604 (2021).
[<https://doi.org/10.1103/PhysRevC.104.064604>]

[9]. K.P.Santhosh, Tinu Ann Jose, and N.K. Deepak, Probable chances of radioactive decays from superheavy nuclei $^{290-304}120$ within a modified generalized liquid drop model with a Q-value-dependent preformation factor, *Physical Review C*, **105**, 054605 (2022).
[<https://doi.org/10.1103/Phys.Rev.C.105.054605>]

[10].K.P.Santhosh, Megha Chandran, Anusree Radhakrishnan, Studies on alpha and double alpha decay in $^{221-247}\text{Pu}$ isotopes, *Proceedings of the DAE Symp. on Nucl. Phys.* **66**, p.651,652 (2022). [<http://www.sympnp.org/proceedings/66/B154.pdf>]

[11]. Deepika Pathak, Pradeep Singh, Hiteshwar Parshad, Saniya Monga, Sukhdeep Kaur, Harjeet Kaur, Systematics of the spontaneous and simultaneous emission of 2α -particles, *Eur.Phys. J. Plus* (2022) **137**;1115. [<http://dx.doi.org/10.1140/epjp/s13360-022-03309-y>]

[12]. Deepika Pathak, Pardeep Singh, Hiteshwar Parshad, Theoretical investigation of double- α emission, *Proceedings of the Department of Atomic Energy(DAE),National Symposium on Nuclear Physics, Volume 66*,p.314,315(2022).
[<http://www.sympnp.org/proceedings/66/A131.pdf>]

[13]. V.Yu. Denisov, Estimation of the double alpha-decay half-life, *Physics Letters B* **835** (2022) 137569. [<https://doi.org/10.1016/j.physletb.2022.137569>]

[14]. K.P.Santhosh and Megha Chandran, α and 2α decay of nuclei in the region $94 \leq Z \leq 101$ using the modified generalized liquid drop model, *Physical Review C* **107**, 024614 (2023). [<https://doi.org/10.1103/PhysRevC.107.024614>]

[15]. C.K. Sreelakshmi, K.M.Ashiq, and Nithu Ashok, Double Alpha Decay Half-lives of Bismuth Isotopes, Proceedings of Department of Atomic Energy, National Symposium on Nuclear Physics, **67**. A59. p153,154(2023).
<https://sympnp.org/proceedings/67/A59>

[16]. J. Zhao et al., Microscopic description of alpha, 2 alpha, and cluster decays of $^{216-220}\text{Rn}$ and $^{220-224}\text{Ra}$, Phys. Rev. C **107** (2024) 034311.
<https://doi.org/10.1103/PhysRevC.107.034311>.

[17]. G. Royer et al., Longitudinal ternary fission, Phys. Rev. C **109** (2024) L041604.
<https://doi.org/10.1103/PhysRevC.109.L041604>.

[18]. G.M.Carmel Vigila Bai, M.Thenmozhi, Competition between Double alpha and Beryllium decay of radioactive nuclei with $Z=89-91$ & $Z=120$ using CYEM, in Proceedings of the International Conference on Interdisciplinary Research in Chemistry ICIRC-2023, organized by Department of Chemistry, Nesamony Memorial Christian College, Marthandam, February 24,25, 2023, p.242-246. [ISBN: 978-93-5812-971-7].

[19]. G.M.Carmel Vigila Bai, M. Thenmozhi, R.Racil Jeya Geetha, Study of Double Alpha Decay properties of $^{221-232}\text{Pu}$ isotopes, proceedings of National Conference on Advanced Functional Materials, NCAFAM (2023), organized by Department of Physics, Department of Chemistry, R & D Cell in association with IQAC, VTM NSS College, Dhanuvachapuram, Thiruvananthapuram, Kerala State Council for Science, Technology and Environment.

[20]. G.M.Carmel Vigila Bai, M. Thenmozhi, R.Racil Jeya Geetha, Theoretical investigation on 2α -Decay of ^{209}Bi isotope using CYEM, Proceedings of DAE-BRNS Symp. Nucl. Phys. **67**.B165. p.691-692(2023). [ISBN: 978-81-954733-9-7].
[\[http://sympnp.org/proceedings/67/B165.pdf\]](http://sympnp.org/proceedings/67/B165.pdf)

[21]. G.M.Carmel Vigila Bai, M.Thenmozhi, R.Racil Jeya Geetha, The eventuality of double alpha decay of $Z=120$ Super Heavy Nuclei, Proceedings of the International Conference on Advanced Functional Materials and applications(ICAFMA-2024), organized by Department of Physics and Research Centre, Nesamony Memorial Christian College, Marthandam, at 6th and 7th March 2024, p.34-38. [ISBN:978-93-340-2164-6].

[22]. G.M.Carmel Vigila Bai, M. Thenmozhi, R.Racil Jeya Geetha, Spontaneous emission of two-alpha particles from various nuclei, Proceedings of Department of Atomic Energy, National Symposium on Nuclear Physics, **68**. A59. p153,154(2024).
[\[http://sympnp.org/proceedings/67/A59.pdf\]](http://sympnp.org/proceedings/67/A59.pdf)

[23]. G.M.Carmel Vigila Bai, M. Thenmozhi, R.Racil Jeya Geetha, A methodical research on double alpha decay of nuclei with proton number from 60 to 93 using CYEM, communicated to Ukrainian Journal of Physics.

[24] C. Theisen et al., CERN reports CERN-INTC-2022-016; INTC-CLL-049 (2022), <https://cds.cern.ch/record/2809125>.

[25]. P. Belli et al., Search for alpha and double alpha decays of natural Nd isotopes accompanied by gamma quanta, *Eur. Phys. J. A* **60** (2024) 46. <https://doi.org/10.1140/epja/s10050-024-01260-3>.

[26] P. Belli et al., Final results of the measurement to search for rare decays of naturally occurring osmium isotopes with ultra-low background gamma-ray spectrometry, *Eur. Phys. J. A* **60** (2024) 150. <https://doi.org/10.1140/epja/s10050-024-01371-x>.

[27]. L. Varga et al., Novel device to study double-alpha decay at the FRS Ion Catcher, *Nucl. Instrum. Meth. A* **1063** (2024) 169252. <https://doi.org/10.1016/j.nima.2024.169252>.

[28]. P.de Marcillac et.al., Experimental detection of α -particles from the radioactive decay of natural bismuth, *Nature* 422(2003) 876. [<https://doi.org/10.1038/nature01541>]

[29]. Price P.B., Heavy particle radioactivity ($A > 4$), *Annual Review of Nuclear and Particle Science* **39**, 19(1989). [<https://doi.org/10.1146/annurev.ns.39.120189.000315>.]

[30]. H.J.Krappe, J.R Nix and A.J. Sierk, Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations, *Phys. Rev. C* **20**, 992 (1979). [<https://doi.org/10.1103/PhysRevC.20.992>]

[31]. G. A. Pik-Pichak, *Sov. J. Nucl. Phys.* **44**, 923 (1986).

[32]. J.R.Nix, The normal modes of oscillation of a uniformly charged drop about its saddle-point shape, *Annals of Physics*, **41**, p52 (1967). [[https://doi.org/10.1016/0003-4916\(67\)90199-6](https://doi.org/10.1016/0003-4916(67)90199-6)]

[33]. G.Shanmugam, G.M. Carmel Vigila Bai and B.Kamalaharan, Cluster radioactivities from an island of cluster emitters, *Phys.Rev. C* **51**, 2616(1995). [<https://doi.org/10.1103/PhysRevC.51.2616>]

[34]. G.M.Carmel Vigila Bai and J.Umai Parvathi, Revamped half-lives of super heavy elements(SHE) in trans-actinide region. *Proceedings of the DAE-BRNS Symp. on Nucl. Phys.* **60**, p.210,211 (2015). [<http://sympnp.org/proceedings/60/A78.pdf>]

[35]. G.M.Carmel Vigila Bai and J.Umai Parvathi, Alpha decay properties of heavy and superheavy elements, *Pramana Journal of physics*, vol.84, No.1 Jan. (2015), pp 113-116.
[<https://www.ias.ac.in/article/fulltext/pram/084/01/0113-0116>]

[36]. G.M.Carmel Vigila Bai and J.Umai Parvathi, Contingency of Alpha decay in $^{287-306}$ 120 isotopes of SHE Proceedings of DAE symp. On Nucl. Phys. **59**, p.278,279(2014). [<http://sympnp.org/proceedings/59/A115.pdf>]

[37]. J.Umai Parvathy, Repercussion of rotational energy in super heavy nuclei, *International Journal of Creative Research Thoughts*, Vol. **6**, Issue 1, p.1338-1342(2018). [<https://ijcrt.org/papers/IJCRT1803287.pdf>]

[38]. G.M.Carmel Vigila Bai and R.Revathi, Effect of Multipolarity deformation and spin in odd-A nucleus ^{117}Ts , proceedings of the DAE symp. On Nucl. Phys. **65**, p.82,83.(2021). [<http://sympnp.org/proceedings/65/A30.pdf>]

[39]. G.M.Carmel Vigila Bai and R.Revathi, Alpha and heavy cluster radioactivity of superheavy nuclei $100 \leq Z \leq 120$, *Journal of Physics: Conference series* 1706(2020) 012021. [DOI 10.1088/1742-6596/1706/1/012021]

[40]. G.M.Carmel Vigila Bai and R.Revathi, Prediction of Decay Modes for Superheavy Nuclei with Magic Number of Neutrons and Protons, *Journal of Scientific Research*, **16**(1), p.71-79(2024). [<http://dx.dpo.org/10.3329/jsr.v16i1.65165>]

[41]. G.M.Carmel Vigila Bai and V.S.Ajithra, Predictions for the alpha decay of $Z=127-138$ Super Heavy Nuclei using the CYE Model, *Ukr.J.Phys.*(2024). Vol. **69**, p.158-167 No.3.ISSN 2071-0186. [<https://doi.org/10.15407/ujpe69.3.158>]

[42]. G.M.Carmel Vigila Bai and V.S.Ajithra, Prediction of decay modes for superheavy nuclei $Z=138$, *Proceedings of DAE-BRNS Symp. Nucl. Phys.* **67**.p.359,360.(2023). [ISBN: 978-81-954733-9-7]. [<http://sympnp.org/proceedings/67/A162.pdf>]

[43]. G.M.Carmel Vigila Bai and R.Abisha, Two proton radioactivity half life study of heavy and super heavy mass region- $Z \geq 10$ to $Z \leq 111$ *Proceedings of the International Conference on Interdisciplinary Research in Chemistry ICIRC-2023*, organized by Department of Chemistry, Nesamony Memorial Christian College, Marthandam, February 24,25, 2023, p.233-237. [ISBN: 978-93-5812-971-7].

[44]. G.M.Carmel Vigila Bai and R.Abisha, Two proton Radioactivity half life study using CYE Model, *Proceedings of DAE-BRNS Symp. Nucl. Phys.* **67**.

P.361,362.(2023). [ISBN: 978-81-954733-9-7].
[<http://sympnp.org/proceedings/67/A163.pdf>]

[45]. G.M.Carmel Vigila Bai and R.Abisha, Possible 2p decay emission in the region $4 \leq Z \leq 54$ using the modified CYE Model, Ukr.J.Phys.(2024). Vol.**69**, p.149-157 No.3.ISSN 2071-0186. [<https://doi.org/10.15407/ujpe69.3.149>]

[46]. G.M.Carmel Vigila Bai and R. Nithya Agnes, Systematic study on fine structure of alpha decay of some odd-even nuclei in trans-actinide region, proceedings of DAE-BRNS symp. on Nucl. Phys **61**,p.338,339.(2016).
[<http://sympnp.org/proceedings/61/A139.pdf>]

[47]. G.M.Carmel Vigila Bai and R. Nithya Agnes, Theoretical studies on the fine structure of α decay for even-odd and even-even isotopes of Cm, Cf, Fm, and No nuclei, Pramana-J.Physics(2019) **93**:39. [<https://doi.org/10.1007/s12043-019-1801-8>]

[48]. R. Nithya Agnes, G.M.Carmel Vigila Bai, Heavy particle radioactivity and alpha decay in heavy Molybdenum isotopes, proceedings of DAE-BRNS Symp.on Nucl. Phys.**65**, p.146,147.(2021). [<http://www.sympnp.org/proceedings/65/A62.pdf>]

[498]. G.M.Carmel Vigila Bai and R. Nithya Agnes, Role of multipolarity-Six deformation on exotic decay half-lives of Berkelium nucleus, IOSR Journal of Applied Physics (IOSR-JAP), (2017) e-ISSN: 2278- 4861. PP.84-91.
[<https://doi.org/10.9790/4861-17002028491>]

[50]. G.M.Carmel Vigila Bai and R. Nithya Agnes, Alpha decay and cluster decay of some neutron-rich actinide nuclei, Pramana-J. Phys. (2017) **88**:43.
[<https://doi.org/10.1007/s12043-016-1328-1>]

[51]. G.M.Carmel Vigila Bai and R. Nithya Agnes, The role of higher multi-polarity beta six deformations and decay energy on exotic decay half-life of highly deformed heavy Nobelium(No) nucleus, proceedings of the DAE Symp. on Nucl. Phys. **62**. p.344,345 (2017). [<http://www.sympnp.org/proceedings/62/A144.pdf>]