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Protective coatings are essential for improving magnesium (Mg) alloy performance and longevity
in a variety of industrial environments. The wear and tear, or attrition loss, that these coatings
endure over time, continues to be a major problem. Conventional techniques to calculate attrition
loss are imprecise and unable to consider the intricate relationships between coating components
and surroundings. Our research suggests a novel machine learning (ML) method to forecast
attrition loss in magnesium alloys with spray-on coatings as a solution to this problem. For the
forecasting model in this paper, adaptive seagull optimization integrated random forest (ASO-RF)
strategy is suggested. Wear loss data that was actually obtained for AZ91D Mg-alloyed
specimens that were sprayed with various settings was used in this investigation. With the help of
the gathered dataset, the ASO-RF algorithm is trained, allowing for precise attrition loss forecasts
under different circumstances. In terms of attribute loss prediction, the suggested ASO-RF
method's performance in Matlab implementation is examined and contrasted. This method
presents a viable way to maximize coating formulas and thicknesses to reduce attrition, improving
the overall performance and durability of magnesium alloys.

Keywords: Spray-On Coating, Industrial Environments, Mg Alloy, Attrition Loss, Machine
Learning (ML), Adaptive Seagull Optimization Integrated Random Forest (ASO-RF).

1. Introduction

Magnesium (Mg) alloys have attracted a lot of interest from a variety of sectors because of
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its exceptional strength-to-weight ratio, low density and amazing machinability [1]. The
wear and corrosion susceptibility of magnesium alloys limits their long-term durability and
performance, which makes their practical application difficult. The use of protective coatings
has become a viable alternative in an attempt to overcome these obstacles [2]. Spray-on
coatings have attracted attention due to their adaptability, simplicity of use and capacity to
offer a consistent layer of protection on magnesium alloys [3]. By acting as a barrier, these
coatings protect the underlying alloy from abrasive and corrosive environments [4]. Even
though these coatings have clear advantages, it's critical to recognize and estimate any
potential attrition losses that can happen in the future [5].

Attrition loss describes the slow deterioration and wear of the protective layer under service
circumstances in the context of spray-on coatings for magnesium alloys [6]. Numerous
variables, such as the coating material's intrinsic qualities, mechanical loads and
environmental exposure, might have an impact on this occurrence [7]. Determining the
lifespan of coated magnesium alloys and refining coating formulas for improved
performance need a precise prediction of attrition loss [8].

Estimating attrition loss for magnesium alloys with spray-on coatings presents a substantial
potential as businesses increasingly use machine learning technologies for predictive
analysis and optimization [9]. The empirical models used by traditional attrition loss
prediction approaches cannot be as detailed or flexible as needed to account for the intricate
interactions between variables that affect coating wear over time [10]. Attrition loss for
spray-on coatings on Mg alloys includes potential uneven coating distribution, difficulty in
establishing uniform thickness and challenges in sustaining adhesion under harsh
temperatures. Furthermore, differences in coating qualities can impair long-term durability,
needing careful consideration for practical applications [11].

Study [12] obtained the experimentation on abrasive deterioration for AZ91D alloy of
magnesium samples covered with two different spraying coating techniques with different
parameters. The extreme learn machine (ELM) and support vector regression (SVR)
techniques were used to forecast wear degradation values. The SVR approach was beaten by
the ELM approach. Because of this, the ELM technique has a great chance of helping with
the spray coating process to fabricate durable components for a range of applications. Study
[13] investigated the influence of wear factors on the wear rate (WR) of magnesium (AZ91)
composites. Artificial neural networks (ANN), adaptable neuro-fuzzy inference algorithms
(ANFIA) and decision tree structures (DT) are examples of methods from machine learning
(ML) that were used to build an efficient model for prediction for predicting the outcomes at
the appropriate input parameters. When compared to other models evaluated in their study,
the DT model was found to be more accurate.

Study [14] explored ZrO.-wt.-% 22 MgO was laser blasted over the outermost layer of an
AZ91D mg alloy. The roughness of the surface was assessed using a profilometer and
toughness was determined using the micro-hardness test. The identified portions that were
addressed using an optics microscope (OM) and scanning electron microscopy (SEM). One
of the ML methods, the ELM algorithm, was applied to utilize damaged data. The model
developed using the ELM approach had an R-squared coefficient success rate. Study [15]
provided the effects of incorporating Mg into ZA-27 alloy on both its characteristics of
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morphology and tribology. There was variation in the Mg concentration. We evaluated
proportional rate of wear for a range of operational conditions. Aspect detection and surface
inspection were achieved by using SEM and X-ray diffraction (XRD) methods. The
experiment finding demonstrate that the Mg concentration of 0.5% exhibited the lowest wear
rate.

Study [16] provided the rate of degradation (WD) of ZnO-filled AA7075 composite was
examined using the data-driven decision trees (DT) technique. The Taguchi technique
indicates that a 10% reinforcement content, an applied load, a sliding velocity and distance
are the ideal level factors for getting the least WD. The results of the DT algorithm
experiments, reinforcing was the primary component controlling the material's wear, as
confirmed by the Taguchi-based technique's examination of variation and ratio of signal to
noise investigation. The development and prediction of corrosion rate of magnesium alloys
based on the composition of the magnesium chemical alloy as independent input variables
was achieved in study [17] through the use of various training algorithms, including K-
nearest neighbor (KNN), artificial neural network (ANN), decision tree (DT), extra tree
(ET), random forest (RF) and linear regression (LR). The result indicates that among ML
and RF algorithm has the biggest impact on predictions.

Study [18] demonstrated the track and categorizes sliding bearings' multi-variant wear
behaviour. The acoustic emission (AE) approach was utilized on a sliding bearing test setup
to achieve this goal. A hydrodynamic bearing operation's irregularities were identified by
evaluating AE signals using machine learning techniques. The classification accuracy was
compromised due to the potential misinterpretation of the incubation period at the
commencement of inadequate lubrication as running-in and vice versa, in certain cases.
Study [19] provided the machine learning techniques, such as extreme gradient boosting
(XGB) and ANNs, to calculate the bidirectional fiber-reinforced polymeric
compound's degradation rate and to compare the performance of the various algorithms. The
most important characteristics of the input, according to the XGB model, are contact
particles acceleration, contact position and the orientation of the fibers.

Study [20] developed a wear resistant mass reduction forecasting technique for sporting
goods utilizing the highest probability estimate for durability assessment. The results
demonstrate their method's low wear and strong wear resistance, as well as its steady
increase in coating mass loss with increasing load. Sports gear coated with this technique has
wear absorbed approximately.

The purpose of this study is to improve the general efficiency and long-term reliability of
magnesium alloys in various industrial environments by addressing the enduring problem of
inaccurate attrition loss estimation in magnesium oxide alloys with protective paints and
offering a useful tool for optimizing covering mixes and levels of thickness.

The remaining portion of this article is as follows: Part 2 discusses the methodology. In Part
3 of this article, we provide the result and discussion. The concluding segment of this article,
Part 4, summarizes the key findings and contributions of our research.
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2. METHODOLOGY
2.1 Data collection

The samples of AZ91D magnesium alloy measuring 20 mm in diameter and 50 mm in length
were employed as substrates. Materials were immersed in an ultrasonic bath for fifteen
minutes after being cleaned with ethanol to remove oil and debris from their exterior
surfaces. They were humidified with hot air and washed with distilled water before that is
placed in an ultrasonic bath for a further fifteen-minute period. The parts of the object that
were intended to be covered were modified to improve coating absorption and sanded using
Al>Os3 sand at a pressure of five bar and chemical composition shown in Table 1.

Table 1. The AZ91D magnesium alloy's chemical composition (Source: Author)

Alloy Composition
Al 8.6-9.6

Cu 0.026 max
Mg 89-91.51
Mn 0.18-0.5

Si 0.051 max
Zn 0.46-0.10
Other metals Rest

To enhance coating adherence, the surfaces that were going to be covered were roughened
and sanded using Al.O; mud pressurized of 5 bar. Table 2 displays the attributes of the
Zr0,-wt % 22M go coating powder was applied using plasma spraying. Table 3 displays the
features of the HVOF-powdered satellite-1, GTV trademark.

Table 2. Properties of Zr0,—Mgo coated powder (Source: Author)
Ceramic Particle size Chemical composition (wt. %)
Zr0, —46 + 21um 79
Mgo 23
Table 3. Properties of Stellite-1 coating powder (Source: Author)
Particle size | Element | Chemical composition (wt.
%)
-54+21um Co Bal.
Cr 31
w 13
C 1.6
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The substrates were roughened and coated with ZrO,-wt % 22Mgo utilizing plasma
spraying, as shown in Table 4. Table 5 displays the coating parameters for the HVOF
process.

Table 4. Coating parameter for plasma spraying (Source: Author)

Sample number M S, S Sy N Se
Current (A) 601 | 601 601 501 | 501 501
Spray distance | 121 | 131 141 121 | 131 141
(mm)

Rate of feeding | 41 - - - - -
for powders

(g/min)

Circulation rate | 11 - - - - -
of hydrogen
electric gas
(/min)

The movement | 36 - - - - -
rate of the argon
shielded gas
(I/min)

Amount of | 151 | - - - - -
voltage (V)

Table 5. Coating parameter for the HVOF process (Source: Author)

number

Oxygen 251 251 251 201 201 201
flow rate
(I/min)

Propane 61 61 61 51 51 51
flow  rate
(I/min)

Spray 261 271 281 261 271 281
distance
(mm)

The velocity | 26 - - - - -
of flow of
nitro  gases
as carriers
(/min)
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Rate of | 51 - - - - -
feeding for
powders
(g/min)

Velocity of | 101 | - - - - -
traversal
(mm/s)

2.2. Data preprocessing
Min-Max normalization:

The min-max normalization ensures that diverse variables with varying scales contribute
equally to the analysis, making attrition loss data comparability easier. Normalizing input
data improves model efficacy by preventing specific traits from dominating the analysis
merely on the basis of their magnitude.

The original data is linearly altered by min-max normalization as shown in Equation (3). The
normalized values fall within the specified range. The calculation is provided for mapping a
v value of an attribute A from range [min,, max,] to a new range [new_min,, new_max,].

v—min . ,
———4 (new_miny, new_max,) + new_miny, Q)
max,— ming

2.3. Adaptive seagull optimization (ASO)

ASO method is its quick convergence speed, low computational cost and ability to solve
large-scale constrained problems. It has a lot of advantages over other optimization
algorithms. A global optimization search process of ASO is linear in equation (2).

A = fc — (t X (fc¢/Maxiteration)) (2
When the variable's value decreases from 2 to 0 and t =0,1,2,..., MaX;tergtion Max
iteration, fc¢ can regulate the frequency of the variable.

The global search capacity of SOA cannot be leveraged due to this linear search strategy. We
provide a nonlinear search control formula, represented by Equation (3), which can be used
to enhance the algorithm's speed and accuracy by focusing on the seagull group exploration
phase stage as shown in Equation (3).

A =fx L

©)

ar
e4‘(maxit:ration)
Where e is the natural logarithm's base.
2.4 Random forest (RF)

This algorithm is a comprehensive ensemble method that consists of several decision trees.
The integrated method utilizes bagging to generate multiple independent decision trees and
the final results are selected based on the average or majority voting principle. This approach
is employed to mitigate the potential danger of data over-fitting. The performance of the RF
model is strongly influenced by two crucial factors, namely the number of entry and tree,
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throughout the forest creation process. In the conventional RF model, the selection of values
for ntree and mtry is guided by empirical knowledge and it is subjected to a certain level of
uncertainty.

The forest is composed of up of numerous decision trees {4(x,0j), m=1,2,3,...N}.

Using the bootstrap approach to generate j sets 61,2....6; and the accompanying j decision
trees by repeating random extraction of original data.

In the case when the feature space is M-dimensional, it is necessary to determine the
constant m and thereafter select m sub-feature sets randomly from the M-dimensional feature
space. By following this approach, the optimal segmentation can be obtained by the
establishment of the decision tree.

The growth of each decision tree occurs without the implementation of pruning techniques,
allowing it to expand unrestrictedly until it reaches a point where further splitting is no
longer feasible.

The process involves generating j decision trees to form a random forest ensemble. The best
decision tree is determined by a voting mechanism.

The ultimate result is obtained by calculating the average value of j decision trees /4 (x, 6j).
2.5. Adaptive seagull optimization integrated random forest (ASO-IRF)

The Magnesium (Mg) alloy spray-on coating attrition loss can be reduced with the
innovative ASO-IRF method. This novel approach improves the performance of protective
coatings by combining the advantages of Random Forest (RF) and Adaptive Seagull
Optimization (ASO) algorithms.

ASO improves the coating process for magnesium alloys by adjusting its search parameters,
using inspiration from the shrewd foraging habits of seagulls. This ability enables effective
solution space exploration, enhancing the adhesion and robustness of the coating.

ASO-IRF uses ensemble learning to assess and forecast attrition loss patterns and it is
integrated with Random Forest, a powerful machine learning method. The utilization of
several decision trees in Random Forest (RF) methodology improves the precision of
forecasts, enabling the determination of optimal coating parameters that offer the highest
level of protection against attrition shown in algorithm 1.

Algorithm 1: Adaptive Seagull Optimization Integrated Random Forest (ASO-IRF)

function adaptive_seagull_optimization(objective_function, initial_solution):
initialize_seagulls()

while not convergence_criteria_met:

update_seagull_positions()

evaluate_fitness(objective_function)

update_seagull_parameters()
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return best_solution

function random_forest(train_data, train_labels, test_data):
initialize_forest()

for treein forest:

bootstrap_sample = create_bootstrap_sample(trainggiq, train jgpeis)
grow_tree(tree, bootstrap_sample)

return predict_majority_vote(forest, test_data)

function aso_irf (coating_data, attrition_loss_labels):

best_coating_params =
adaptive_seagull_optimization(objective_function, initial_solution)

optimized_coating_data =
apply_coating_params(coating_data, best_coating_params)

prediCtedattritionloss =
random_forest(optimized_coating_data, attrition_loss_labels, test_data)

return best_coating_params, predicted_attrition_loss \

3. RESULT AND DISCUSSION

We used three distinct assessment standards R-square (R?), mean absolute error (MAE) and
root mean square error (RMSE) to evaluate the existing method ANN, ELM [21] and
proposed method ASO-RF. We applied HVOF and plasma spray-coated magnesium alloys
to data collected from dry slide wearing trials. 220 experimental data points were employed
in total. The data set was separated into testing and training sets to evaluate the mathematical
models created to forecast the loss of wear as a number. The total data, there were 165
samples in the training set (75 %) and 55 samples in the test set (25 %), data during training
and testing was assigned at random. To provide accurate comparisons between the
three distinct approaches, the same training and test datasets were employed.

3.1. R-Squared (R?)

R? Offers a gauge of how well the model replicates the observed findings depending on the
total rate of variance of the outcomes of the framework described in Equation (4).

2 _ 1 _ |ZiGi-pd)?
Re=1 zi(si—ﬁﬂ] )

3.2. Mean Absolute Error (MAE)

This measure indicates the overall degree of agreement in real units between the predicted
and observed datasets. For a perfect model, the outcome is zero and Equation (5) displays a
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non-negative observation with no upper bound.

1 —
MAE = 3L, 12— g | )
3.3. Root Mean Square Error (RMSE)

Measuring the variations between actual and expected values in machine learning models is
a common application of this technique. The root average square error is the higher degree
square of the differences among the actual and expected values, or RMSE shown in Equation

(6).
RMSE = % X Yils; — ;12 (6)

Fig 1 displays the comparison of experimental and predicted results for the test data and the
expected amount of wear loss as well as the range of errors that exist between intended and
real forecasts.

Number of Data

Fig. 1. Comparative of wear loss findings from experiments and predictions A) ANN B)
ELM C) ASO-RF (Source: Author)

In Fig 1, all of the constructed models are highly accurate in predicting the experimental
findings based on the graphs. The test data shows that the ELM algorithm performs the
poorest overall for indices 6, 20 and 34, while the ASO-RF algorithm performs best overall
and forecasts wear amount values that are closer to the goal values. The above indices have
target values of 6.26, 14.56 and 6.70, respectively. The ELM algorithm predicts values of
6.57, 10.81 and 6.33, in that order. The ASO-RF algorithm has predicted values of 6.69,
11.78 and 6.81, in that order. Fig 2 illustrates error rate of the existing and proposed method.
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Errors

Number of Data

Errors.

5 0 5
Number of Data

Fig. 2. Error rate models developed with A) ANN, B) ELM, C) ASO-RF (Source: Author)

A detailed evaluation of each model's prediction values' error values can be found in Fig 2.
The ASO-RF model's forecast in figure yields the lowest error values. When the model
absolute error totals divided by the amount of instances yielded the MAE values, they were
compared, For the ANN model, the MAE was determined to be 0.4428, ELM model have
the 0.4797, For the ASO-RF model and the optimal MAE value of 0.4369 was calculated.
Fig 3 shows the (A-C) Scatter plot of models.

5 OR

S

Predicted WL - ANN
N & @ ® 3 8 2
Predicted WL - ELM

o & o ®

Predicted WL ~ ASO-RF

6 & 10
Experimental WL

Fig.3. Scatterplot of A) ANN B) ELM C) ASO-RF (Source: Author)
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We used scatter plots to show how accurate the models were during the testing periods. R?,
MAE and RMSE values were evaluated separately for every model to evaluate each of their
individual performances. Table 6 shows the parameters for ANN, ELM and ASO-RF. The
shortest RMSE value for ASO-RF was found to be 0.5516. The ASO-RF model's calculated
R2 of 0.9730 indicates that it performs better than the remaining methods. Compared to that
of ANN, the RMSE measurement for ASO-RF is less than that of ELM and ANN.
Considering an MAE value of 0.4370, the ASO-RF approach had the shortest value. The
ELM method performed lowest in terms of MAE, while the proposed technique provided a
result that was lower than that of the ELM algorithm.

Table 6. An assessment of the specified models' performance (Source: Author)
Model RMSE MAE R?

Artificial  Neural | 0.5526 0.4429 0.9729
Network (ANN)

Extreme Learning | 0.5902 0.4798 | 0.9691
Machine

(ELM)
Adaptive Seagull | 0.5516 0.4370 | 0.9730
Optimization
Integrated Random
Forest (ASO-RF)

Our proposed method outperforms other methods in every parameter. It demonstrates
superior performance across all evaluated metrics.

4. CONCLUSION

The protective coatings are essential for improving the longevity and performance of
magnesium (Mg) alloys in a variety of industrial environments. The present research
proposed a unique integrated random forest method for adaptive seagull optimization (ASO-
RF) to forecast attrition loss in magnesium alloys coated with spray-on coatings. It
demonstrated to generate precise attrition loss projections under a variety of conditions by
utilizing wear loss data from AZ91D Mg-alloyed specimens that were exposed to different
spray parameters. The AZ91D Mg-alloyed specimens are the specific subject of the study.
The proposed method achieved R? (0.9730), MAE (0.4370) and RMSE (0.5516). Our
proposed method outperforms other methods in every parameter. It demonstrates superior
performance across the evaluated metrics. Furthermore, additional validation can be
necessary for the suggested method's adaptation to different industrial conditions and
magnesium-based composition. It is important to recognize that complicated operating
situations and real-world unpredictability can provide obstacles to the method's general
adoption. Further research could expand the scope of the suggested approach to encompass
various magnesium alloy composition and coat products, investigating its scalability.
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