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Protective coatings are essential for improving magnesium (Mg) alloy performance and longevity 

in a variety of industrial environments. The wear and tear, or attrition loss, that these coatings 

endure over time, continues to be a major problem. Conventional techniques to calculate attrition 

loss are imprecise and unable to consider the intricate relationships between coating components 

and surroundings. Our research suggests a novel machine learning (ML) method to forecast 

attrition loss in magnesium alloys with spray-on coatings as a solution to this problem. For the 

forecasting model in this paper, adaptive seagull optimization integrated random forest (ASO-RF) 

strategy is suggested. Wear loss data that was actually obtained for AZ91D Mg-alloyed 

specimens that were sprayed with various settings was used in this investigation. With the help of 

the gathered dataset, the ASO-RF algorithm is trained, allowing for precise attrition loss forecasts 

under different circumstances. In terms of attribute loss prediction, the suggested ASO-RF 

method's performance in Matlab implementation is examined and contrasted. This method 

presents a viable way to maximize coating formulas and thicknesses to reduce attrition, improving 

the overall performance and durability of magnesium alloys.  

   

Keywords: Spray-On Coating, Industrial Environments, Mg Alloy, Attrition Loss, Machine 

Learning (ML), Adaptive Seagull Optimization Integrated Random Forest (ASO-RF).  

 

 

1. Introduction 

Magnesium (Mg) alloys have attracted a lot of interest from a variety of sectors because of 
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its exceptional strength-to-weight ratio, low density and amazing machinability [1]. The 

wear and corrosion susceptibility of magnesium alloys limits their long-term durability and 

performance, which makes their practical application difficult. The use of protective coatings 

has become a viable alternative in an attempt to overcome these obstacles [2]. Spray-on 

coatings have attracted attention due to their adaptability, simplicity of use and capacity to 

offer a consistent layer of protection on magnesium alloys [3]. By acting as a barrier, these 

coatings protect the underlying alloy from abrasive and corrosive environments [4]. Even 

though these coatings have clear advantages, it's critical to recognize and estimate any 

potential attrition losses that can happen in the future [5]. 

Attrition loss describes the slow deterioration and wear of the protective layer under service 

circumstances in the context of spray-on coatings for magnesium alloys [6]. Numerous 

variables, such as the coating material's intrinsic qualities, mechanical loads and 

environmental exposure, might have an impact on this occurrence [7]. Determining the 

lifespan of coated magnesium alloys and refining coating formulas for improved 

performance need a precise prediction of attrition loss [8]. 

Estimating attrition loss for magnesium alloys with spray-on coatings presents a substantial 

potential as businesses increasingly use machine learning technologies for predictive 

analysis and optimization [9]. The empirical models used by traditional attrition loss 

prediction approaches cannot be as detailed or flexible as needed to account for the intricate 

interactions between variables that affect coating wear over time [10]. Attrition loss for 

spray-on coatings on Mg alloys includes potential uneven coating distribution, difficulty in 

establishing uniform thickness and challenges in sustaining adhesion under harsh 

temperatures. Furthermore, differences in coating qualities can impair long-term durability, 

needing careful consideration for practical applications [11]. 

Study [12] obtained the experimentation on abrasive deterioration for AZ91D alloy of 

magnesium samples covered with two different spraying coating techniques with different 

parameters. The extreme learn machine (ELM) and support vector regression (SVR) 

techniques were used to forecast wear degradation values. The SVR approach was beaten by 

the ELM approach. Because of this, the ELM technique has a great chance of helping with 

the spray coating process to fabricate durable components for a range of applications. Study 

[13] investigated the influence of wear factors on the wear rate (WR) of magnesium (AZ91) 

composites. Artificial neural networks (ANN), adaptable neuro-fuzzy inference algorithms 

(ANFIA) and decision tree structures (DT) are examples of methods from machine learning 

(ML) that were used to build an efficient model for prediction for predicting the outcomes at 

the appropriate input parameters. When compared to other models evaluated in their study, 

the DT model was found to be more accurate. 

Study [14] explored ZrO2-wt.-% 22 MgO was laser blasted over the outermost layer of an 

AZ91D mg alloy. The roughness of the surface was assessed using a profilometer and 

toughness was determined using the micro-hardness test. The identified portions that were 

addressed using an optics microscope (OM) and scanning electron microscopy (SEM). One 

of the ML methods, the ELM algorithm, was applied to utilize damaged data. The model 

developed using the ELM approach had an R-squared coefficient success rate. Study [15] 

provided the effects of incorporating Mg into ZA-27 alloy on both its characteristics of 
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morphology and tribology. There was variation in the Mg concentration. We evaluated 

proportional rate of wear for a range of operational conditions. Aspect detection and surface 

inspection were achieved by using SEM and X-ray diffraction (XRD) methods. The 

experiment finding demonstrate that the Mg concentration of 0.5% exhibited the lowest wear 

rate. 

Study [16] provided the rate of degradation (WD) of ZnO-filled AA7075 composite was 

examined using the data-driven decision trees (DT) technique. The Taguchi technique 

indicates that a 10% reinforcement content, an applied load, a sliding velocity and distance 

are the ideal level factors for getting the least WD. The results of the DT algorithm 

experiments, reinforcing was the primary component controlling the material's wear, as 

confirmed by the Taguchi-based technique's examination of variation and ratio of signal to 

noise investigation. The development and prediction of corrosion rate of magnesium alloys 

based on the composition of the magnesium chemical alloy as independent input variables 

was achieved in study [17] through the use of various training algorithms, including K-

nearest neighbor (KNN), artificial neural network (ANN), decision tree (DT), extra tree 

(ET), random forest (RF) and linear regression (LR). The result indicates that among ML 

and RF algorithm has the biggest impact on predictions. 

Study [18] demonstrated the track and categorizes sliding bearings' multi-variant wear 

behaviour. The acoustic emission (AE) approach was utilized on a sliding bearing test setup 

to achieve this goal. A hydrodynamic bearing operation's irregularities were identified by 

evaluating AE signals using machine learning techniques. The classification accuracy was 

compromised due to the potential misinterpretation of the incubation period at the 

commencement of inadequate lubrication as running-in and vice versa, in certain cases. 

Study [19] provided the machine learning techniques, such as extreme gradient boosting 

(XGB) and ANNs, to calculate the bidirectional fiber-reinforced polymeric 

compound's degradation rate and to compare the performance of the various algorithms. The 

most important characteristics of the input, according to the XGB model, are contact 

particles acceleration, contact position and the orientation of the fibers. 

Study [20] developed a wear resistant mass reduction forecasting technique for sporting 

goods utilizing the highest probability estimate for durability assessment. The results 

demonstrate their method's low wear and strong wear resistance, as well as its steady 

increase in coating mass loss with increasing load. Sports gear coated with this technique has 

wear absorbed approximately. 

The purpose of this study is to improve the general efficiency and long-term reliability of 

magnesium alloys in various industrial environments by addressing the enduring problem of 

inaccurate attrition loss estimation in magnesium oxide alloys with protective paints and 

offering a useful tool for optimizing covering mixes and levels of thickness. 

The remaining portion of this article is as follows: Part 2 discusses the methodology. In Part 

3 of this article, we provide the result and discussion. The concluding segment of this article, 

Part 4, summarizes the key findings and contributions of our research. 
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2. METHODOLOGY 

2.1 Data collection 

The samples of AZ91D magnesium alloy measuring 20 mm in diameter and 50 mm in length 

were employed as substrates. Materials were immersed in an ultrasonic bath for fifteen 

minutes after being cleaned with ethanol to remove oil and debris from their exterior 

surfaces. They were humidified with hot air and washed with distilled water before that is 

placed in an ultrasonic bath for a further fifteen-minute period. The parts of the object that 

were intended to be covered were modified to improve coating absorption and sanded using 

Al2O3 sand at a pressure of five bar and chemical composition shown in Table 1.  

Table 1. The AZ91D magnesium alloy's chemical composition (Source: Author) 

Alloy Composition 

AI 8.6-9.6 

Cu 0.026 max 

Mg 89-91.51 

Mn 0.18-0.5 

Si 0.051 max 

Zn 0.46-0.10 

Other metals  Rest 

To enhance coating adherence, the surfaces that were going to be covered were roughened 

and sanded using Al2O3 mud pressurized of 5 bar. Table 2 displays the attributes of the 

𝑍𝑟𝑂2-wt % 22𝑀𝑔𝑜 coating powder was applied using plasma spraying. Table 3 displays the 

features of the HVOF-powdered satellite-1, GTV trademark. 

Table 2. Properties of 𝑍𝑟𝑂2–𝑀𝑔𝑜 coated powder (Source: Author) 

Ceramic Particle size Chemical composition (wt. %) 

𝑍𝑟𝑂2 −46 + 21𝜇𝑚 79 

𝑀𝑔𝑜 23 

Table 3. Properties of Stellite-1 coating powder (Source: Author) 

Particle size Element Chemical composition (wt. 

%) 

-54+21𝜇𝑚 Co Bal. 

Cr 31 

W 13 

C 1.6 
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The substrates were roughened and coated with 𝑍𝑟𝑂2-wt % 22𝑀𝑔𝑜 utilizing plasma 

spraying, as shown in Table 4. Table 5 displays the coating parameters for the HVOF 

process. 

Table 4. Coating parameter for plasma spraying (Source: Author) 

Sample number 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 

Current (A) 601 601 601 501 501 501 

Spray distance 

(mm) 

121 131 141 121 131 141 

Rate of feeding 

for powders 

(g/min) 

41 - - - - - 

Circulation rate 

of hydrogen 

electric gas 

(l/min) 

11 - - - - - 

The movement 

rate of the argon 

shielded gas 

(l/min) 

36 - - - - - 

Amount of 

voltage (V) 

151 - - - - - 

Table 5. Coating parameter for the HVOF process (Source: Author) 

Sample 

number 
𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12 

Oxygen 

flow rate 

(l/min) 

251 251 251 201 201 201 

Propane 

flow rate 

(l/min) 

61 61 61 51 51 51 

Spray 

distance 

(mm) 

261 271 281 261 271 281 

The velocity 

of flow of 

nitro gases 

as carriers 

(l/min) 

26 - - - - - 
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Rate of 

feeding for 

powders 

(g/min) 

51 - - - - - 

Velocity of 

traversal 

(mm/s) 

101 - - - - - 

2.2. Data preprocessing  

Min-Max normalization:  

The min-max normalization ensures that diverse variables with varying scales contribute 

equally to the analysis, making attrition loss data comparability easier. Normalizing input 

data improves model efficacy by preventing specific traits from dominating the analysis 

merely on the basis of their magnitude. 

The original data is linearly altered by min-max normalization as shown in Equation (3). The 

normalized values fall within the specified range. The calculation is provided for mapping a 

𝑣 value of an attribute A from range [𝑚𝑖𝑛𝐴, 𝑚𝑎𝑥𝐴] to a new range [𝑛𝑒𝑤_𝑚𝑖𝑛𝐴, 𝑛𝑒𝑤_𝑚𝑎𝑥𝐴]. 

𝑣−𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴− 𝑚𝑖𝑛𝐴
(𝑛𝑒𝑤_𝑚𝑖𝑛𝐴, 𝑛𝑒𝑤_𝑚𝑎𝑥𝐴) + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴                                                     (1) 

2.3. Adaptive seagull optimization (ASO) 

ASO method is its quick convergence speed, low computational cost and ability to solve 

large-scale constrained problems. It has a lot of advantages over other optimization 

algorithms. A global optimization search process of ASO is linear in equation (2). 

𝐴 =  𝑓𝑐 − (𝑡 × (𝑓𝑐/𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛))                                                                (2)  

When the variable's value decreases from 2 to 0 and  𝑡 = 0,1,2, … , 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 Max 

iteration, 𝑓𝑐 can regulate the frequency of the variable. 

The global search capacity of SOA cannot be leveraged due to this linear search strategy. We 

provide a nonlinear search control formula, represented by Equation (3), which can be used 

to enhance the algorithm's speed and accuracy by focusing on the seagull group exploration 

phase stage as shown in Equation (3). 

𝐴 = 𝑓𝑐 ×
1

𝑒
4.(

𝑡
𝑚𝑎𝑥𝑖𝑡𝑟𝑟𝑎𝑡𝑖𝑜𝑛

)
4′

 

                                                                                         (3) 

Where 𝑒 is the natural logarithm's base. 

2.4 Random forest (RF) 

This algorithm is a comprehensive ensemble method that consists of several decision trees. 

The integrated method utilizes bagging to generate multiple independent decision trees and 

the final results are selected based on the average or majority voting principle. This approach 

is employed to mitigate the potential danger of data over-fitting. The performance of the RF 

model is strongly influenced by two crucial factors, namely the number of entry and tree, 
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throughout the forest creation process. In the conventional RF model, the selection of values 

for ntree and mtry is guided by empirical knowledge and it is subjected to a certain level of 

uncertainty. 

The forest is composed of up of numerous decision trees {ℎ(𝑥,𝜃𝑗), 𝑚=1,2,3,…𝑁}. 

Using the bootstrap approach to generate j sets 𝜃1,2….𝜃𝑗 and the accompanying j  decision 

trees by repeating random extraction of original data. 

In the case when the feature space is M-dimensional, it is necessary to determine the 

constant m and thereafter select m sub-feature sets randomly from the M-dimensional feature 

space. By following this approach, the optimal segmentation can be obtained by the 

establishment of the decision tree. 

The growth of each decision tree occurs without the implementation of pruning techniques, 

allowing it to expand unrestrictedly until it reaches a point where further splitting is no 

longer feasible. 

The process involves generating j decision trees to form a random forest ensemble. The best 

decision tree is determined by a voting mechanism. 

The ultimate result is obtained by calculating the average value of j decision trees ℎ (𝑥, 𝜃𝑗). 

2.5. Adaptive seagull optimization integrated random forest (ASO-IRF) 

The Magnesium (Mg) alloy spray-on coating attrition loss can be reduced with the 

innovative ASO-IRF method. This novel approach improves the performance of protective 

coatings by combining the advantages of Random Forest (RF) and Adaptive Seagull 

Optimization (ASO) algorithms. 

ASO improves the coating process for magnesium alloys by adjusting its search parameters, 

using inspiration from the shrewd foraging habits of seagulls. This ability enables effective 

solution space exploration, enhancing the adhesion and robustness of the coating. 

ASO-IRF uses ensemble learning to assess and forecast attrition loss patterns and it is 

integrated with Random Forest, a powerful machine learning method. The utilization of 

several decision trees in Random Forest (RF) methodology improves the precision of 

forecasts, enabling the determination of optimal coating parameters that offer the highest 

level of protection against attrition shown in algorithm 1. 

Algorithm 1: Adaptive Seagull Optimization Integrated Random Forest (ASO-IRF) 

function 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠𝑒𝑎𝑔𝑢𝑙𝑙_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛): 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑠𝑒𝑎𝑔𝑢𝑙𝑙𝑠()  

while not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎_𝑚𝑒𝑡:  

𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑎𝑔𝑢𝑙𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠()  

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)  

𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑎𝑔𝑢𝑙𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠()  
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𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

function 𝑟𝑎𝑛𝑑𝑜𝑚_𝑓𝑜𝑟𝑒𝑠𝑡(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑡𝑟𝑎𝑖𝑛_𝑙𝑎𝑏𝑒𝑙𝑠, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎): 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑓𝑜𝑟𝑒𝑠𝑡()  

𝑓𝑜𝑟 𝑡𝑟𝑒𝑒 𝑖𝑛 𝑓𝑜𝑟𝑒𝑠𝑡:  

𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝_𝑠𝑎𝑚𝑝𝑙𝑒 =  𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝_𝑠𝑎𝑚𝑝𝑙𝑒(𝑡𝑟𝑎𝑖𝑛𝑑𝑎𝑡𝑎, 𝑡𝑟𝑎𝑖𝑛 𝑙𝑎𝑏𝑒𝑙𝑠)  

𝑔𝑟𝑜𝑤_𝑡𝑟𝑒𝑒(𝑡𝑟𝑒𝑒, 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝_𝑠𝑎𝑚𝑝𝑙𝑒)  

𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒(𝑓𝑜𝑟𝑒𝑠𝑡, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎)  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑠𝑜_𝑖𝑟𝑓(𝑐𝑜𝑎𝑡𝑖𝑛𝑔_𝑑𝑎𝑡𝑎, 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠_𝑙𝑎𝑏𝑒𝑙𝑠):  

𝑏𝑒𝑠𝑡_𝑐𝑜𝑎𝑡𝑖𝑛𝑔_𝑝𝑎𝑟𝑎𝑚𝑠 =
 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠𝑒𝑎𝑔𝑢𝑙𝑙_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)  

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝑐𝑜𝑎𝑡𝑖𝑛𝑔_𝑑𝑎𝑡𝑎 =
 𝑎𝑝𝑝𝑙𝑦_𝑐𝑜𝑎𝑡𝑖𝑛𝑔_𝑝𝑎𝑟𝑎𝑚𝑠(𝑐𝑜𝑎𝑡𝑖𝑛𝑔_𝑑𝑎𝑡𝑎, 𝑏𝑒𝑠𝑡_𝑐𝑜𝑎𝑡𝑖𝑛𝑔_𝑝𝑎𝑟𝑎𝑚𝑠)  

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛𝑙𝑜𝑠𝑠
=

𝑟𝑎𝑛𝑑𝑜𝑚_𝑓𝑜𝑟𝑒𝑠𝑡(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝑐𝑜𝑎𝑡𝑖𝑛𝑔_𝑑𝑎𝑡𝑎, 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠_𝑙𝑎𝑏𝑒𝑙𝑠, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎)  

𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡_𝑐𝑜𝑎𝑡𝑖𝑛𝑔_𝑝𝑎𝑟𝑎𝑚𝑠, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠 \ 

 

 

3. RESULT AND DISCUSSION  

We used three distinct assessment standards R-square (𝑅2), mean absolute error (MAE) and 

root mean square error (RMSE) to evaluate the existing method ANN, ELM [21] and 

proposed method ASO-RF. We applied HVOF and plasma spray-coated magnesium alloys 

to data collected from dry slide wearing trials. 220 experimental data points were employed 

in total. The data set was separated into testing and training sets to evaluate the mathematical 

models created to forecast the loss of wear as a number. The total data, there were 165 

samples in the training set (75 %) and 55 samples in the test set (25 %), data during training 

and testing was assigned at random. To provide accurate comparisons between the 

three distinct approaches, the same training and test datasets were employed. 

3.1. R-Squared (𝑅2) 

𝑅2 Offers a gauge of how well the model replicates the observed findings depending on the 

total rate of variance of the outcomes of the framework described in Equation (4). 

𝑅2 = 1 − [
∑ (𝑠𝑖−𝑝𝑖)2 

𝑖

∑ (𝑠𝑖−𝑠̂)2 
𝑖

]                                                                                                      (4) 

3.2. Mean Absolute Error (MAE) 

This measure indicates the overall degree of agreement in real units between the predicted 

and observed datasets. For a perfect model, the outcome is zero and Equation (5) displays a 
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non-negative observation with no upper bound. 

𝑀𝐴𝐸 =
1

𝑀
∑ |𝑧𝑗 − 𝑒𝑗̅

𝑀
𝑗=1 |                                                                                                     (5) 

3.3. Root Mean Square Error (RMSE) 

Measuring the variations between actual and expected values in machine learning models is 

a common application of this technique. The root average square error is the higher degree 

square of the differences among the actual and expected values, or RMSE shown in Equation 

(6). 

𝑅𝑀𝑆𝐸 =
1

𝑀
× ∑ |𝑠𝑖 − 𝜃𝑖|2 

𝑖                                                                                                 (6) 

Fig 1 displays the comparison of experimental and predicted results for the test data and the 

expected amount of wear loss as well as the range of errors that exist between intended and 

real forecasts. 

 

Fig. 1. Comparative of wear loss findings from experiments and predictions A) ANN B) 

ELM C) ASO-RF (Source: Author) 

In Fig 1, all of the constructed models are highly accurate in predicting the experimental 

findings based on the graphs. The test data shows that the ELM algorithm performs the 

poorest overall for indices 6, 20 and 34, while the ASO-RF algorithm performs best overall 

and forecasts wear amount values that are closer to the goal values. The above indices have 

target values of 6.26, 14.56 and 6.70, respectively. The ELM algorithm predicts values of 

6.57, 10.81 and 6.33, in that order. The ASO-RF algorithm has predicted values of 6.69, 

11.78 and 6.81, in that order. Fig 2 illustrates error rate of the existing and proposed method. 
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Fig. 2. Error rate models developed with A) ANN, B) ELM, C) ASO-RF (Source: Author) 

A detailed evaluation of each model's prediction values' error values can be found in Fig 2. 

The ASO-RF model's forecast in figure yields the lowest error values. When the model 

absolute error totals divided by the amount of instances yielded the MAE values, they were 

compared, For the ANN model, the MAE was determined to be 0.4428, ELM model have 

the 0.4797, For the ASO-RF model and the optimal MAE value of 0.4369 was calculated. 

Fig 3 shows the (A-C) Scatter plot of models. 

 

Fig.3. Scatterplot of A) ANN B) ELM C) ASO-RF (Source: Author) 
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We used scatter plots to show how accurate the models were during the testing periods. 𝑅2, 

MAE and RMSE values were evaluated separately for every model to evaluate each of their 

individual performances. Table 6 shows the parameters for ANN, ELM and ASO-RF. The 

shortest RMSE value for ASO-RF was found to be 0.5516. The ASO-RF model's calculated 

R2 of 0.9730 indicates that it performs better than the remaining methods. Compared to that 

of ANN, the RMSE measurement for ASO-RF is less than that of ELM and ANN. 

Considering an MAE value of 0.4370, the ASO-RF approach had the shortest value. The 

ELM method performed lowest in terms of MAE, while the proposed technique provided a 

result that was lower than that of the ELM algorithm. 

Table 6. An assessment of the specified models' performance (Source: Author) 

Model  RMSE MAE 𝑅2 

Artificial Neural 

Network (ANN) 

0.5526 0.4429 0.9729 

Extreme Learning 

Machine  

(ELM) 

0.5902 0.4798 0.9691 

Adaptive Seagull 

Optimization 

Integrated Random 

Forest (ASO-RF) 

0.5516 0.4370 0.9730 

Our proposed method outperforms other methods in every parameter. It demonstrates 

superior performance across all evaluated metrics. 

 

4. CONCLUSION 

The protective coatings are essential for improving the longevity and performance of 

magnesium (Mg) alloys in a variety of industrial environments. The present research 

proposed a unique integrated random forest method for adaptive seagull optimization (ASO-

RF) to forecast attrition loss in magnesium alloys coated with spray-on coatings. It 

demonstrated to generate precise attrition loss projections under a variety of conditions by 

utilizing wear loss data from AZ91D Mg-alloyed specimens that were exposed to different 

spray parameters. The AZ91D Mg-alloyed specimens are the specific subject of the study. 

The proposed method achieved 𝑅2 (0.9730), MAE (0.4370) and RMSE (0.5516). Our 

proposed method outperforms other methods in every parameter. It demonstrates superior 

performance across the evaluated metrics. Furthermore, additional validation can be 

necessary for the suggested method's adaptation to different industrial conditions and 

magnesium-based composition. It is important to recognize that complicated operating 

situations and real-world unpredictability can provide obstacles to the method's general 

adoption. Further research could expand the scope of the suggested approach to encompass 

various magnesium alloy composition and coat products, investigating its scalability. 
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