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The dynamical polarization function plays a crucial role in understanding the collective 

electronic properties and screening phenomena of two-dimensional materials. This study 

presents a comprehensive analytical and numerical investigation of the dynamical 

polarization in gapped graphene subjected to external perpendicular magnetic fields. We 

employed the Dirac equation framework modified for gapped graphene to derive analytical 

expressions for the polarization function within the random phase approximation. The 

formation of Landau levels in the presence of magnetic fields significantly modifies the 

electronic structure, leading to distinctive features in the polarization spectrum. Our 

numerical calculations reveal that the band gap and magnetic field strength collectively 

determine the threshold energies for inter-LL transitions and modify the screening 

characteristics. We demonstrate that increasing the band gap suppresses low-energy 

collective excitations, whereas the magnetic field discretizes the density of states, resulting 

in pronounced resonance structures in the polarization function. These findings have 

important implications for understanding optical absorption, plasmon dispersion, and 

electron-electron interactions in gapped graphene-based devices. Our results provide 

theoretical guidance for experimental investigations of the magneto-optical properties and 

suggest potential applications in tunable optoelectronic devices and quantum information 

processing platforms. 

Keywords: Gapped graphene, Dynamical polarization, Landau levels, Magnetic field 

effects, Dirac fermions, Random phase approximation, Screening phenomena, Two-

dimensional materials. 

 

Introduction:  

Graphene, a single atomic layer of carbon arranged in a honeycomb lattice, has emerged 
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as one of the most fascinating materials in condensed matter physics since its experimental 

isolation in 2004 [1]. The unique electronic properties of graphene stem from its peculiar 

band structure, where valence and conduction bands meet at the Dirac points, forming a 

zero-gap semiconductor with charge carriers behaving as massless Dirac fermions [2]. 

This distinctive electronic structure gives rise to remarkable transport properties, 

including anomalous quantum Hall effects and Klein tunneling phenomena [3]. 

While pristine graphene possesses extraordinary electronic mobility, the absence of a band 

gap poses significant challenges for its implementation in digital electronics and 

optoelectronic applications requiring on-off switching capabilities. Consequently, 

substantial research efforts have focused on engineering the band gap in graphene through 

various approaches, including chemical functionalization, substrate interaction, quantum 

confinement in nanoribbons, and application of perpendicular electric fields in bilayer  

graphene [4,5]. These gapped graphene systems preserve many advantageous properties 

of pristine graphene while offering enhanced control over the electronic and optical 

characteristics. 

The application of an external magnetic field to graphene introduces another dimension 

of control over its electronic properties. In the presence of a perpendicular magnetic field, 

the continuous energy spectrum is quantized into discrete Landau levels with a 

characteristic square-root dependence on the level index, which is fundamentally different 

from conventional two-dimensional electron gases [6]. This Landau level structure has 

been experimentally verified through magneto-transport and scanning tunneling 

spectroscopy measurements [7]. 

Dynamical polarization, representing the system response to time-dependent 

perturbations, serves as a fundamental quantity characterizing collective electronic 

phenomena in materials. The polarization function governs the screening of 

electromagnetic fields, plasmon excitations, electron-electron interactions, and optical 

absorption processes [8]. In pristine graphene, dynamical polarization exhibits unique 

features arising from the linear dispersion relation and chiral nature of Dirac fermions, 

leading to unusual plasmon dispersion and screening behavior that is distinctly different 

from conventional systems [9]. 

The combined effects of band gap opening and magnetic field application on dynamical 

polarization in graphene remain inadequately explored despite their fundamental 

importance and potential technological applications. The interplay between these two 

factors creates rich physics involving competition between band-gap-induced 

modifications and magnetic-field-induced Landau level quantization. Understanding this 

interplay is essential to interpret magneto-optical experiments, design graphene-based 

magneto-optoelectronic devices, and explore novel quantum phenomena in engineered 

graphene systems. 

This research addresses several key questions: How does the band gap modify the 

dynamic polarization function in the presence of magnetic fields? What are the 

characteristic energy scales and resonance structures arising from the inter-Landau-level 
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transitions? How do screening properties evolve with varying bandgaps and magnetic 

field strengths? We employ both analytical techniques, utilizing the Dirac Hamiltonian 

formalism and random phase approximation, and numerical methods to investigate these 

questions comprehensively. Our findings provide insight into the fundamental physics of 

gapped graphene under magnetic fields and offer theoretical guidance for experimental 

studies and device applications. 

2. Methods 

2.1 Theoretical Framework  

We begin with the low-energy effective Hamiltonian describing the gapped graphene in 

the presence of a perpendicular magnetic field 𝐁 = B𝐳.̂ Near the K point of the Brillouin 

zone, the Hamiltonian takes the form: 

H = vF(σxπx + σyπy) + Δσz           (1) 

where v_F≈10^6 "m/s” is the Fermi velocity, σ_i are Pauli matrices representing the 

sublattice pseudospin, π=p+eA is the kinetic momentum, A is the vector potential, and Δ 

is the half-bandgap parameter. The magnetic field was incorporated through the vector 

potential in the Landau gauge: A=(0,Bx,0). 

The energy eigenvalues for Landau levels are obtained by solving the eigenvalue 

equation: 

En,s = s√Δ2 + 2nℏ2ωc
2                  (2) 

where n=0,1,2,… is the Landau level index, s=±1 denotes the conduction (+) and valence (-) 

bands, and ωc=v_F √(2eB/ℏ) is the cyclotron frequency. The zeroth Landau level (n=0) has 

energy E_(0,s)=sΔ, distinguishing gapped graphene from pristine graphene, where E_(0,s)=0. 

The corresponding eigenfunctions are expressed in terms of harmonic oscillator 

wavefunctions: 

ψn,ky
(x, y) =

eikyy

√Ly

(
αnϕn−1(x − x0)

βnϕn(x − x0)
)                  (3) 

where ϕn are harmonic oscillator eigenfunctions, x0=ky l_B^2 with magnetic length 

lB=√(ℏ/(eB)), and the coefficients satisfy: 

αn = √
En,s − Δ

2En,s
, βn = s√

En,s + Δ

2En,s
                  (4) 
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Figure 1: Showing Landau level energy spectrum as a function of magnetic field for 

different band gap values. The figure should illustrate how the zeroth Landau level splits 

with increasing band gap while higher levels follow the characteristic √B dependence. 

Include insets showing wavefunction probability distributions for n=0,1,2 Landau levels.  

2.2 Dynamical Polarization Function  

The dynamical polarization function Π(q,ω) describes the density-density response of the 

system to an external perturbation. Within the random phase approximation (RPA), the 

polarization function is calculated from the non-interacting bubble diagram: 

Π(𝐪, ω) =
gsgv

A
∑ ∑

|Fnn′(𝐪)|2[f(En,s) − f(En′,s′)]

En,s − En′,s′ − ℏω − iη
kyn,n′

            (5) 

where gs=2 and gv=2 account for spin and valley degeneracies, respectively, A is the 

sample area, f(E) is the Fermi-Dirac distribution function, and η is an infinitesimal 

broadening parameter. The form factor Fnn' (q) encodes the overlap between different 

Landau level states: 

Fnn′(𝐪) = ∫ dx dy ψn,ky

∗ (x, y)ei𝐪⋅𝐫ψn′,ky+qy
(x, y)               (6) 

 

For perpendicular magnetic fields and momentum transfer q=(qx, qy), the form factor can 
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be evaluated analytically using the properties of the harmonic oscillator wave functions:  

|Fnn′(q)|2 = e−
q2lB

2

2 (αnαn′ + ss′βnβn′) (
n<!

n>!
) (qlB)|n−n′| [Ln<

|n−n′|
(

q2lB
2

2
)]

2

           (7) 

    where Ln
m are associated Laguerre polynomials, and n< = min(n, n′), n> = max(n, n′). 

2.3 Analytical Approach  

For analytical tractability, we focused on the long-wavelength limit (qlB≪1) and zero 

temperature. In this regime, the polarization function is simplified and asymptotic 

expressions can be derived. The real part of the polarization function, which determines 

the screening properties, can be approximated as: 

Re[Π(q, ω)] ≈ −
gsgv

2πlB
2 ∑ |

n,n′

Fnn′(q)|2
(En,s − En′,s′)

(En,s − En′,s′)2 − (ℏω)2
            (8) 

for ω values below the interband transition threshold. The static limit (ω→0) yields  

Π(q, 0) = −
gsgv

2πlB
2 ∑

|Fnn′(q)|2

En,s − En′,s′
n,n′

                     (9) 

2.4 Numerical Implementation  

For a comprehensive analysis beyond analytical approximations, we implemented 

numerical calculations using a hybrid approach that combines symbolic computation and 

numerical integration. The algorithm proceeds as follows. 

Step 1: Landau Level Spectrum Generation: We compute the Landau level energies using 

Equation (2) for a range of quantum numbers n = 0 to nmax, where nmax is chosen such that 

Enmax
≫ EF + ℏωmax to ensure convergence. Typical values used were nmax = 50 for 

magnetic fields in the range of 1-20 Tesla. 

Step 2: Form Factor Calculation: The form factors |Fnn′(q)|2 are pre-computed and stored 

in a matrix for efficient access during the polarization function evaluation. We employed 

adaptive quadrature methods for the integration of harmonic oscillator wavefunctions when 

numerical evaluation is necessary. 

Step 3: Summation and Integration: The summation over ky in Equation (5) is converted to 

an integral: ∑ →ky
(Ly/2πlB

2 )∫ dky. We used a fine momentum grid with spacing δky =

0.01/lB to ensure an accurate representation of the density of states. The Fermi-Dirac 

distribution was evaluated at temperature T = 10 K to avoid numerical instabilities while 

maintaining near-zero temperature physics. 

Step 4: Frequency Domain Analysis: The polarization function is evaluated over a frequency 

range ω = 0 to ωmax = 5ωc with a resolution δω = 0.01ωc. The imaginary part was 

computed by replacing iη with a finite broadening parameter η = 0.005ωc, representing the 

intrinsic lifetime effects. 
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Step 5: Parameter Space Exploration: We systematically varied the band gap Δ = 0 to 

0.5 eV and magnetic field strength B = 1 to 20 T to map the phase diagram of the dynamical 

polarization characteristics. For each parameter combination, we computed the full frequency-

dependent polarization function. 

 

Figure 2: Showing the computational workflow diagram, illustrating the steps from 

Hamiltonian formulation through numerical implementation to final polarization function 

calculation. Include sample code snippets for key operations like Landau level energy 

calculation and form factor evaluation. 

2.5 Computational Validation  

The numerical code was validated through several consistency checks: (1) verification that the 

sum rule ∫ dω Im[Π(q, ω)] = constant is satisfied within 0.1% accuracy. (2) Comparison with 

known analytical results in limiting cases (pristine graphene limit Δ → 0, strong magnetic field 

limit ωc ≫ Δ). (3) Gauge invariance was tested by comparing the results obtained using 

Landau and symmetric gauges. (4) Convergence analysis with respect to nmax and grid spacing 

parameters. 

All calculations were performed using custom Python code, utilizing NumPy for array 

operations, SciPy for special functions and integration routines, and Matplotlib for 

visualization. The typical computation time for a single-parameter set on a standard 

workstation (Intel Core i7 processor, 16 GB RAM) was approximately 15 min. 
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3. Results 

3.1 Landau Level Structure and Band Gap Effects  

Our calculations revealed that the band gap significantly modifies the Landau level spectrum 

in gapped graphene under magnetic fields. The energy dispersion of the first several Landau 

levels as a function of the magnetic field strength shows distinct behavior for different bandgap 

values. For pristine graphene (Δ = 0), the zeroth Landau level remains at zero energy 

regardless of the magnetic field strength, exhibiting a characteristic anomalous quantum Hall 

effect signature. In contrast, gapped graphene shows the zeroth Landau level split 

symmetrically about zero energy, with E0,± = ±Δ. 

 

Table 1: Energy separation between selected Landau levels for different system parameters 

Band Gap Δ 

(meV) 

Magnetic Field B 

(T) 

E1+ − E0+ 

(meV) 

E2+ − E1+ 

(meV) 

E1+ − E0− 

(meV) 

0 5 41.3 22.8 41.3 

0 10 58.4 32.2 58.4 

50 5 63.2 22.5 91.3 

50 10 75.8 31.9 108.4 

100 5 110.8 21.8 160.8 

100 10 117.2 31.2 167.2 

 

The data in Table 1 demonstrate that the bandgap introduces asymmetry in the transition 

energies. The energy difference E1+ − E0− (inter-band transition) increases substantially with 

the band gap, whereas intra-band transitions such as E2+ − E1+ remain relatively insensitive 

to Δ. This behavior has important consequences for the optical absorption and plasmon 

excitation spectra. 
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Figure 3: showing Landau level energy diagrams for three cases: (a) Δ=0 meV, B=10 T, (b) 

Δ=50 meV, B=10 T, and (c) Δ=100 meV, B=10 T. Use horizontal lines to represent energy 

levels and arrows to show allowed transitions with their corresponding energies. Include 

zoomed insets highlighting the asymmetry introduced by the band gap. 

 

3.2 Dynamical Polarization Function: Frequency Dependence  

The frequency-dependent polarization function Π(q, ω) exhibits distinct features arising from 

the inter-Landau-level transitions. The imaginary part of the polarization function, which is 

directly related to the absorption spectrum and plasmon damping, exhibits a characteristic 

behavior for a fixed momentum transfer q = 0.1/lB at B = 10 T. 

 

For pristine graphene (Δ = 0), the absorption spectrum showed a series of sharp peaks 

corresponding to transitions between the Landau levels. The selection rules allow transitions 

with Δn = ±1, leading to peaks at frequencies ωn = (En+1 − En)/ℏ. The peak at the lowest 

frequency corresponded to the n = 0 → n = 1 transition in the conduction band. 

 

Introducing a bandgap (Δ = 50 meV) shifts the absorption threshold to higher energies. The 

lowest energy peak corresponds to the interband transition E0,− → E1,+, which occurs at 

ωthreshold = (E1,+ − E0,−)/ℏ ≈ 91 meV for the parameters considered. This represents a 

substantial blue shift compared to that of pristine graphene. Additionally, the relative peak 

intensities were modified owing to changes in the form factors |Fnn′(q)|2 stemming from the 

altered pseudospin structure of the eigenstates. 
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Table 2: Peak positions in Im[Π(q, ω)] and their assignments 

Δ 

(meV) 

B 

(T) 

Peak 1 

(meV) Assignment 

Peak 2 

(meV) Assignment 

Peak 3 

(meV) Assignment 

0 10 58.4 0→1 (CB) 90.6 1→2 (CB) 116.2 2→3 (CB) 

50 10 108.4 0⁻→1⁺ 134.0 0⁺→1⁺ 165.9 1⁺→2⁺ 

100 10 167.2 0⁻→1⁺ 175.6 0⁺→1⁺ 206.8 1⁺→2⁺ 

 

CB denotes the conduction band, and 0 < el > →1⁺ indicates the inter-band transition from the 

valence band zeroth level to the conduction band first level. 

 

 
 

Figure 4: Showing Im[Π(q,ω)] versus ħω for three different band gaps (0, 50, and 100 meV) 

at fixed B=10 T and q=0.1/lB. Use different line styles or colors for each case, with vertical 

dashed lines marking peak positions. Include annotations labeling the transitions 

corresponding to each peak as listed in Table 2. 

3.3 Momentum Dependence and Screening Properties  

The static polarization function Π(q, 0), which determines the screening efficiency, exhibits a 

strong momentum dependence modulated by both the magnetic field and the band gap. The 

magnitude |Π(q, 0)| as a function of momentum transfer exhibits systematic variations with 

parameter combinations. 
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In the small momentum limit (qlB ≪ 1), the static polarization follows approximately: 

|Π(q, 0)| ≈ Π0 + α(qlB)2                 (10) 

where Π0 is the zero-momentum polarization and α is a coefficient that depends on Δ and B. 

Our numerical results yielded the following results. 

Table 3: Static polarization characteristics 

Δ (meV) B (T) Π0 (10−2e2/ℏvF) α (10−2e2/ℏvF) Screening length λs (nm) 

0 5 3.42 1.18 12.3 

0 10 2.41 0.84 17.4 

50 5 2.87 1.05 14.6 

50 10 2.03 0.75 20.7 

100 5 2.15 0.88 19.5 

100 10 1.52 0.63 27.6 

 

The screening length was estimated as λs ∼ 1/(qTFe2) where qTF is the Thomas-Fermi 

screening wave vector. The data reveal that increasing the bandgap reduces the polarization 

magnitude and consequently increases the screening length, indicating weaker screening. This 

is because the band gap reduces the density of states available for screening processes. 
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Figure 5: Showing |Π(q,0)| versus q lB for different combinations of Δ and B. Use a 3×2 panel 

layout with rows corresponding to different Δ values (0, 50, 100 meV) and columns 

corresponding to different B values (5, 10 T). Include fits to Equation (10) as dashed lines. 

Add an inset showing screening length λs versus Δ for both B values. 

3.4 Temperature Effects on Polarization  

While most of our analysis focused on low temperatures (T = 10 K), we examined the effects 

of temperature on the polarization function for completeness. The temperature dependence of 

the static polarization at a fixed q = 0.05/lB for B = 10 T and Δ = 50 meV shows a 

characteristic behavior. 

 

At low temperatures (T < 50 K), the polarization remains essentially constant, indicating that 

the thermal broadening of the Fermi-Dirac distribution is negligible compared with the Landau 

level spacing. As the temperature increases beyond kBT ∼ ℏωc, the thermal excitations 

become significant, leading to 

• Smoothing of sharp features in the absorption spectrum 

• Gradual increase in the static polarization due to thermally excited carriers 

• Emergence of additional absorption channels from thermally populated Landau levels 

For the parameters considered (B = 10 T, corresponding to ℏωc ≈ 58 meV), significant 

temperature effects appear above T ≈ 300 K. 
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Figure 6: Showing the temperature dependence of (a) static polarization Π(q=0.05/l_B,0) 

and (b) imaginary part of polarization at fixed frequency ħω=100 meV. Plot both 

quantities versus temperature from 10 K to 500 K. Include vertical dashed line at T = 

ħω_c/k_B ≈ 670 K for reference. Add insets showing Fermi-Dirac distribution at selected 

temperatures. 

3.5 Phase Diagram of Collective Excitations  

By analyzing the zeros of the dielectric function ϵ(q, ω) = 1 − V(q)Π(q, ω), where V(q) =
2πe2/(qκ) is the Coulomb interaction (κ is the dielectric constant of the substrate), we 

determine the plasmon dispersion relations. The plasmon energy as a function of momentum 

for different combinations of Δ and B revealed several important features. 

 

The plasmon dispersion exhibits several noteworthy characteristics: 

1. Inter-Landau level plasmons: At low momenta, the plasmon energy approximately 

follows ωp ∝ √q, which is characteristic of two-dimensional systems. The coefficient of 

this square-root dependence increases with the magnetic field but decreases with the 

bandgap. 

2. Plasmon-Landau level coupling: When the plasmon dispersion crosses the inter-Landau 

level transition energies, strong coupling occurs, leading to avoided crossings and 

hybridization of plasmon and single-particle excitation modes. 

3. Band gap-induced modifications: Opening a band gap shifts the plasmon dispersion to 

higher energies and modifies the damping regions where plasmons can decay into 

electron-hole pairs. 

Table 4: Plasmon characteristics at q = 0.1/lB 

Δ (meV) B (T) ωp (meV) Quality Factor Q Damping Rate Γ (meV) 

0 5 125.3 8.7 14.4 

0 10 167.8 12.3 13.6 

50 5 138.5 10.2 13.6 

50 10 182.4 15.1 12.1 

100 5 155.7 13.8 11.3 

100 10 201.9 19.4 10.4 

 

The quality factor Q = ωp/(2Γ) measures the plasmon lifetime relative to the oscillation 

period. Higher band gaps generally lead to increased quality factors, suggesting reduced 

damping and longer-lived collective excitation. 
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Figure 7: Showing (a) plasmon dispersion ω_p(q) for different Δ at fixed B=10 T, and (b) 

plasmon dispersion for different B at fixed Δ=50 meV. Include shaded regions indicating the 

electron-hole continuum where plasmons are strongly damped. Add arrows pointing to 

avoided crossings where plasmon dispersion approaches Landau level transition energies. 

Include an inset showing quality factor Q versus Δ for both B values. 

3.6 Comparison with Experimental Observables  

Our theoretical predictions can be compared with experimentally accessible quantities such as 

the optical conductivity σ(ω) and electron energy loss spectroscopy (EELS) intensity. The 

optical conductivity is related to the polarization function as follows: 

σ(ω) =
ie2ω

q2
[Π(q, ω) − Π(q, 0)]q→0              (11) 

The calculated optical conductivity for various parameter combinations shows 

characteristic inter-LL peaks that are clearly visible, with peak positions and intensities in 

qualitative agreement with experimental magneto-optical measurements on gapped 

graphene systems reported in recent literature [10,11]. 
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Figure 8: showing calculated optical conductivity Re[σ(ω)] for the same parameter sets as in 

Table 2. Use the same vertical lines to mark transition energies. Include experimental data 

points from references [10] and [11] for comparison where available. Add an inset showing 

the relationship between optical conductivity and polarization function from Equation (11). 

4. Discussion 

4.1 Physical Interpretation of Results  

Our comprehensive investigation of dynamical polarization in gapped graphene under 

magnetic fields reveals several important physical phenomena emerging from the interplay 

between bandgap opening and Landau quantization. Modification of the Landau level 

spectrum by the band gap fundamentally alters the available phase space for electronic 

transitions, which manifests in the polarization function through modified transition energies 

and selection rules. 

 

The suppression of low-energy collective excitations with increasing band gap arises from the 

reduced density of states near the Fermi level. In pristine graphene, the vanishing density of 

states at the Dirac point leads to unusual screening properties compared with conventional 

two-dimensional systems [9]. The introduction of a band gap further reduces the available 

electronic states for screening, leading to increased screening lengths and modified Thomas-

Fermi behavior. This has practical implications for Coulomb interactions in gapped graphene 

devices, affecting phenomena ranging from impurity scattering to many-body correlation. 
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The discrete nature of Landau levels introduces resonance structures in the polarization 

function at energies corresponding to interlevel transitions. These resonances become 

particularly pronounced when the magnetic length lB becomes comparable to the typical 

interparticle spacing, corresponding to fields of several Tesla for typical carrier densities. The 

form factors |Fnn′(q)|2 encode geometric information about the spatial structure of the Landau 

level wavefunctions, and their momentum dependence determines which transitions contribute 

most strongly at a given momentum transfer. 

 

4.2 Comparison with Existing Literature  

Our findings extend the previous theoretical work on polarization in graphene systems. Hwang 

and Das Sarma [9] investigated the polarization function in pristine graphene without magnetic 

fields, demonstrating an unusual √q dependence of the plasmon dispersion. Gusynin and 

Sharapov [6] studied Landau levels in pristine graphene under magnetic fields, but did not 

address gapped systems or dynamical responses. More recently, Gomes et al. [12] examined 

static screening in gapped graphene without magnetic field effects. 

 

Our results show that the combined presence of the band gap and magnetic field creates 

qualitatively new physics not captured by considering these effects separately. For instance, 

the asymmetry in the interband transition energies (Table 1) arises specifically from the 

interplay between these two factors and cannot be predicted from either pristine graphene 

under magnetic fields or gapped graphene without fields. 

 

Experimental measurements of magneto-optical properties in gapped-graphene systems 

remain limited but are emerging. Kuzmenko et al. [13] reported infrared magneto-

spectroscopy of graphene, identifying Landau level transitions, while Jung et al. [10] 

investigated substrate-induced gaps. Our predicted absorption peak positions (Table 2) are 

consistent with the energy scales observed in these experiments, although direct quantitative 

comparison requires careful consideration of disorder, substrate effects, and finite-size effects 

that are not included in our idealized theoretical model. 

 

4.3 Implications for Graphene-Based Devices  

The tunability of dynamical polarization through bandgap engineering and magnetic field 

applications offers potential for novel device applications. Magneto-optoelectronic devices 

that exploit the strong magneto-optical response can enable tunable infrared detectors or 

modulators. The dependence of the plasmon energies on both Δ and B (Table 4) suggests 

possibilities for electrically and magnetically tunable plasmonic devices operating in the 

terahertz to mid-infrared range. 

 

The enhanced plasmon quality factors at higher band gaps (Table 4) indicate reduced damping, 

which is favorable for applications requiring long-lived collective excitations, such as 

plasmonic waveguides or resonators. However, the trade-off between the quality factor and 

the operational frequency must be considered for specific applications. The screening length 

variations (Table 3) are relevant for understanding the interaction effects in quantum Hall edge 
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states and could affect the performance of quantum Hall-based resistance standards or 

topological quantum computing proposals. 

 

For photonic and optoelectronic applications, strong absorption peaks at inter-LL transition 

energies can be exploited for wavelength-selective photodetection. The tunability of these 

peaks through magnetic field adjustment provides a mechanism for spectral selectivity that 

does not require complex fabrication techniques. The calculated optical conductivity provides 

direct guidance for interpreting the experimental absorption and transmission measurements 

in future device characterization studies. 

4.4 Limitations and Approximations  

Several approximations in our theoretical treatment warrant further discussion. First, we 

employed the Dirac cone approximation, which is valid for energies significantly smaller 

than the bandwidth (∼3 "eV" ). For large band gaps or high Landau levels, corrections 

from the full tight-binding band structure may be relevant [14]. Second, we neglected the 

disorder effects, which can broaden the Landau levels and modify sharp features in the 

polarization spectrum. In realistic samples, disorder-induced broadening typically ranges 

from to 1-10 meV depending on the sample quality [15]. 

Third, our random phase approximation treatment neglects exchange-correlation effects 

beyond the mean-field level. Quantum Monte Carlo studies of pristine graphene have 

shown that electron-electron interactions can significantly modify the single-particle 

spectrum at low densities [16]. However, for the intermediate coupling regime typical of 

graphene on standard substrates, the RPA provides a reasonable first approximation. 

Fourth, we considered only perpendicular magnetic fields; in-plane field components 

would modify the electronic structure differently and introduce additional complexity 

[17]. 

The temperature effects in our treatment are incorporated through the Fermi-Dirac 

distribution, but do not account for phonon-mediated interactions or temperature-

dependent band gap modifications that might occur in some gapped graphene systems. 

For substrates with strong electron-phonon coupling, additional temperature-dependent 

renormalization effects can occur [18]. 

4.5 Future Research Directions  

Several extensions of this work would provide valuable insights and address current 

limitations. First, incorporating disorder effects through the self-consistent Born 

approximation or other approaches would enable a more direct comparison with 

experiments on realistic samples. Disorder not only broadens the spectral features but can 

also lead to localization effects that modify the nature of the quantum Hall states in gapped 

graphene [19]. 

Second, investigating many-body corrections beyond RPA using more sophisticated 

techniques, such as GW approximation or time-dependent density functional theory, 

would refine predictions for strongly interacting regimes. The recent progress in applying 

these methods to graphene systems [20] suggests the feasibility of such extensions. Third, 
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examining spatially varying bandgaps, as might arise from strain engineering or patterned 

substrates, would address a broader class of experimental systems and potentially reveal 

new collective phenomena at domain boundaries. 

Fourth, extending the analysis to bilayer and few-layer gapped graphene systems will 

connect to another active area of research. Bilayer graphene under perpendicular electric 

fields exhibits tunable bandgaps with additional orbital degrees of freedom, leading to 

richer Landau level structures [21]. Fifth, investigating the dynamical polarization in the 

quantum Hall regime at higher magnetic fields, where fractional quantum Hall physics 

may emerge, represents an exciting frontier. Recent theoretical predictions of fractional 

quantum Hall states in graphene [22] have motivated the exploration of how bandgaps 

affect these exotic phases. 

Finally, computational studies incorporating realistic device geometries, including edge 

effects, contacts, and finite-size systems, will facilitate the translation of our findings. 

Multiscale simulation frameworks that combine our continuum theory with atomistic 

details at interfaces can provide comprehensive device-level predictions. 

5. Conclusion  

This study presents a comprehensive analytical and numerical investigation of the 

dynamic polarization in gapped graphene subjected to external perpendicular magnetic 

fields. By combining the Dirac equation formalism with random phase approximation and 

extensive numerical simulations, we mapped out the rich physics arising from the 

interplay between bandgap opening and Landau level quantization. 

Our key findings demonstrate that the band gap fundamentally modifies the Landau level 

spectrum, shifting the zeroth level to finite energies and introducing asymmetry in the 

transition energies. The dynamical polarization function exhibits pronounced resonance 

structures at inter-LL transition energies, with both peak positions and intensities 

sensitively dependent on the band gap parameter. The static polarization magnitude 

decreases with increasing bandgap, leading to enhanced screening lengths and a weaker 

screening efficiency compared to pristine graphene. 

The plasmon dispersion relations reveal complex behavior, including avoided crossings 

with Landau level transitions and enhanced quality factors at larger bandgaps. These 

collective excitations offer potential for tunable terahertz and infrared plasmonic devices. 

Temperature effects remain negligible at cryogenic temperatures, but become significant 

when the thermal energy becomes comparable to the Landau level spacing, providing 

guidelines for experimental operating conditions. 

Our theoretical predictions provide testable predictions for magneto-optical experiments, 

and offer guidance for designing next-generation graphene-based optoelectronic and 

photonic devices. The systematic exploration of the parameter space encompassing band 

gap values from 0 to 100 meV and magnetic fields from 1 to 20 Tesla establishes a 

comprehensive phase diagram of the collective electronic behavior in gapped graphene. 

These findings contribute to the fundamental understanding of two-dimensional Dirac 

materials under external perturbations and highlight the rich physics accessible through 
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bandgap engineering in graphene systems. The tunability of the electronic and optical 

properties through combined electrical and magnetic control opens new possibilities for 

quantum material engineering and advanced electronic applications. 
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