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The dynamical polarization function plays a crucial role in understanding the collective
electronic properties and screening phenomena of two-dimensional materials. This study
presents a comprehensive analytical and numerical investigation of the dynamical
polarization in gapped graphene subjected to external perpendicular magnetic fields. We
employed the Dirac equation framework modified for gapped graphene to derive analytical
expressions for the polarization function within the random phase approximation. The
formation of Landau levels in the presence of magnetic fields significantly modifies the
electronic structure, leading to distinctive features in the polarization spectrum. Our
numerical calculations reveal that the band gap and magnetic field strength collectively
determine the threshold energies for inter-LL transitions and modify the screening
characteristics. We demonstrate that increasing the band gap suppresses low-energy
collective excitations, whereas the magnetic field discretizes the density of states, resulting
in pronounced resonance structures in the polarization function. These findings have
important implications for understanding optical absorption, plasmon dispersion, and
electron-electron interactions in gapped graphene-based devices. Our results provide
theoretical guidance for experimental investigations of the magneto-optical properties and
suggest potential applications in tunable optoelectronic devices and quantum information
processing platforms.

Keywords: Gapped graphene, Dynamical polarization, Landau levels, Magnetic field
effects, Dirac fermions, Random phase approximation, Screening phenomena, Two-
dimensional materials.

Introduction:

Graphene, a single atomic layer of carbon arranged in a honeycomb lattice, has emerged

Nanotechnology Perceptions 20 No.4 (2024) 976-994


http://www.nano/
http://www.nano-ntp.com/
http://www.nano-ntp.com/
http://www.nano-ntp.com/

977 Analytical And Numerical Study Of ... Upendra Kumar Giri et. al.

as one of the most fascinating materials in condensed matter physics since its experimental
isolation in 2004 [1]. The unique electronic properties of graphene stem from its peculiar
band structure, where valence and conduction bands meet at the Dirac points, forming a
zero-gap semiconductor with charge carriers behaving as massless Dirac fermions [2].
This distinctive electronic structure gives rise to remarkable transport properties,
including anomalous quantum Hall effects and Klein tunneling phenomena [ 3].

While pristine graphene possesses extraordinary electronic mobility, the absence of a band
gap poses significant challenges for its implementation in digital electronics and
optoelectronic applications requiring on-off switching capabilities. Consequently,
substantial research efforts have focused on engineering the band gap in graphene through
various approaches, including chemical functionalization, substrate interaction, quantum
confinement in nanoribbons, and application of perpendicular electric fields in bilayer

graphene [4,5]. These gapped graphene systems preserve many advantageous properties
of pristine graphene while offering enhanced control over the electronic and optical
characteristics.

The application of an external magnetic field to graphene introduces another dimension
of control over its electronic properties. In the presence of a perpendicular magnetic field,
the continuous energy spectrum is quantized into discrete Landau levels with a
characteristic square-root dependence on the level index, which is fundamentally different
from conventional two-dimensional electron gases [6]. This Landau level structure has
been experimentally verified through magneto-transport and scanning tunneling
spectroscopy measurements [7].

Dynamical polarization, representing the system response to time-dependent
perturbations, serves as a fundamental quantity characterizing collective electronic
phenomena in materials. The polarization function governs the screening of
electromagnetic fields, plasmon excitations, electron-electron interactions, and optical
absorption processes [8]. In pristine graphene, dynamical polarization exhibits unique
features arising from the linear dispersion relation and chiral nature of Dirac fermions,
leading to unusual plasmon dispersion and screening behavior that is distinctly different
from conventional systems [9].

The combined effects of band gap opening and magnetic field application on dynamical
polarization in graphene remain inadequately explored despite their fundamental
importance and potential technological applications. The interplay between these two
factors creates rich physics involving competition between band-gap-induced
modifications and magnetic-field-induced Landau level quantization. Understanding this
interplay is essential to interpret magneto-optical experiments, design graphene-based
magneto-optoelectronic devices, and explore novel quantum phenomena in engineered
graphene systems.

This research addresses several key questions: How does the band gap modify the
dynamic polarization function in the presence of magnetic fields? What are the
characteristic energy scales and resonance structures arising from the inter-Landau-level

Nanotechnology Perceptions 20 No.4 (2024) 976-994



Analytical And Numerical Study Of ... Upendra Kumar Giri, et al. 978

transitions? How do screening properties evolve with varying bandgaps and magnetic
field strengths? We employ both analytical techniques, utilizing the Dirac Hamiltonian
formalism and random phase approximation, and numerical methods to investigate these
questions comprehensively. Our findings provide insight into the fundamental physics of
gapped graphene under magnetic fields and offer theoretical guidance for experimental
studies and device applications.

2. Methods
2.1 Theoretical Framework

We begin with the low-energy effective Hamiltonian describing the gapped graphene in
the presence of a perpendicular magnetic field B = BZz: Near the K point of the Brillouin
zone, the Hamiltonian takes the form:

H= VF(O'XT[X + O'y‘l'[y) + Ao, D

where v_F~=1076 "m/s” is the Fermi velocity, ¢ i are Pauli matrices representing the
sublattice pseudospin, m=p+eA is the kinetic momentum, A is the vector potential, and A
is the half-bandgap parameter. The magnetic field was incorporated through the vector
potential in the Landau gauge: A=(0,Bx,0).

The energy eigenvalues for Landau levels are obtained by solving the eigenvalue

equation:
Ens=s /AZ + 2nh?w? (2)

where n=0,1,2,... is the Landau level index, s=t1 denotes the conduction (+) and valence (-)
bands, and o~v_F V(2eB/A) is the cyclotron frequency. The zeroth Landau level (n=0) has
energy E_(0,s)=sA, distinguishing gapped graphene from pristine graphene, where E_(0,s)=0.

The corresponding eigenfunctions are expressed in terms of harmonic oscillator
wavefunctions:

(3)

ikyy _
LIJn,ky (X, y) — € (O(nq)n—l (X XO))

T\ Ban(x = o)

where ¢, are harmonic oscillator eigenfunctions, xo=ky I B”2 with magnetic length
1s=\(%/(eB)), and the coefficients satisfy:

Eps—A E,s +A
= f'—, = ’— 4
an ZEn,S Bn S ZEn’S ( )
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Figure 1: Landau Level Energy Spectrum and Wavefunction Distributions in Gapped Graphene.

Figure 1: Showing Landau level energy spectrum as a function of magnetic field for
different band gap values. The figure should illustrate how the zeroth Landau level splits
with increasing band gap while higher levels follow the characteristic VB dependence.
Include insets showing wavefunction probability distributions for n=0,1,2 Landau levels.

2.2 Dynamical Polarization Function

The dynamical polarization function I1(q,®) describes the density-density response of the
system to an external perturbation. Within the random phase approximation (RPA), the
polarization function is calculated from the non-interacting bubble diagram:

s8v Fon 2 f(Eps) — f(Ey &
H(q’“)):%zzl E(Q)_l[( s) (.,)] )
o n,s

e Ep g —hw —in

where g=2 and g,=2 account for spin and valley degeneracies, respectively, A is the
sample area, f(E) is the Fermi-Dirac distribution function, and n is an infinitesimal
broadening parameter. The form factor Fny (q) encodes the overlap between different
Landau level states:

Fon (@) = J dxdy U G 1) pq (%,5) ©)

For perpendicular magnetic fields and momentum transfer g=(qx, qy), the form factor can
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be evaluated analytically using the properties of the harmonic oscillator wave functions:
12

_qlg / 1
P @ = 72 (i +55Bafy) (35 ) [L'“ . (QZB)] @
where LY are associated Laguerre polynomials, and n. = min(n,n’), ny, = max(n,n").
2.3 Analytical Approach

For analytical tractability, we focused on the long-wavelength limit (qlg<<1) and zero
temperature. In this regime, the polarization function is simplified and asymptotic
expressions can be derived. The real part of the polarization function, which determines
the screening properties, can be approximated as:

s8v ns — En' s’
Re[ll(q, w)] = g ?2 Z | Fon? (Q)|2 ( F )2 = 2;100)2 8

for @ values below the interband transition threshold. The static limit (0—0) yields

8s8v |an’(Q)|2
2ml3 £ By — By g
n,n

2.4 Numerical Implementation

For a comprehensive analysis beyond analytical approximations, we implemented
numerical calculations using a hybrid approach that combines symbolic computation and
numerical integration. The algorithm proceeds as follows.

Step 1: Landau Level Spectrum Generation: We compute the Landau level energies using
Equation (2) for a range of quantum numbers n = 0 to n,,,,, where n,,, is chosen such that
En,.. > Ep + hwy,, to ensure convergence. Typical values used were ng,, = 50 for
magnetic fields in the range of 1-20 Tesla.

Step 2: Form Factor Calculation: The form factors |F,,,7(q)|? are pre-computed and stored
in a matrix for efficient access during the polarization function evaluation. We employed
adaptive quadrature methods for the integration of harmonic oscillator wavefunctions when
numerical evaluation is necessary.

Step 3: Summation and Integration: The summation over Ky in Equation (5) is converted to

an integral: Zk - (Ly/ 2mld) [ dky. We used a fine momentum grid with spacing 8k, =

0.01/lg to ensure an accurate representation of the density of states. The Fermi-Dirac
distribution was evaluated at temperature T = 10K to avoid numerical instabilities while
maintaining near-zero temperature physics.

Step 4: Frequency Domain Analysis: The polarization function is evaluated over a frequency
range w =0 to Wy, = 5w, with a resolution dw = 0.01w.. The imaginary part was
computed by replacing in with a finite broadening parameter 1 = 0.005w,, representing the
intrinsic lifetime effects.
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Step 5: Parameter Space Exploration: We systematically varied the band gap A = 0 to
0.5 eV and magnetic field strength B = 1 to 20 T to map the phase diagram of the dynamical
polarization characteristics. For each parameter combination, we computed the full frequency-
dependent polarization function.

Code Implementation Details |
Koy PythonFunctons 1

def calculate_landau_levels(delta, B, m_max«5e):

a;; = E_ns.ssyAlal {delta, n,5}

return £

def calculate form factorin, n_prive, g, 18, delta, En, € nprine, 5, sprinel:

!n; n i inrancetshetdesn$iy
return q, |8, delta, En, E nprine, 3, sprive):

return F_squared

det polarumon_fun(nonlu. onega, delta, B, T=10, eta=d, 005):

= omega, dotta » PL
nolarmnnn function(q(q, osega, delta, B, T#10, etasl),003):

raturn P

Numerical Implementation Architecture |
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Figure 2; Computational Workflow for Dynamical Polarization , m

Calculation in Gapped Graphene. 2 mﬂ;m % 331 R | \

Figure 2: Showing the computational workflow diagram, illustrating the steps from
Hamiltonian formulation through numerical implementation to final polarization function
calculation. Include sample code snippets for key operations like Landau level energy
calculation and form factor evaluation.

2.5 Computational Validation

The numerical code was validated through several consistency checks: (1) verification that the
sum rule | dw Im[TI(q, w)] = constant is satisfied within 0.1% accuracy. (2) Comparison with
known analytical results in limiting cases (pristine graphene limit A — 0, strong magnetic field
limit w. » A). (3) Gauge invariance was tested by comparing the results obtained using
Landau and symmetric gauges. (4) Convergence analysis with respect to n,,,, and grid spacing
parameters.

All calculations were performed using custom Python code, utilizing NumPy for array
operations, SciPy for special functions and integration routines, and Matplotlib for
visualization. The typical computation time for a single-parameter set on a standard
workstation (Intel Core 17 processor, 16 GB RAM) was approximately 15 min.
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3. Results
3.1 Landau Level Structure and Band Gap Effects

Our calculations revealed that the band gap significantly modifies the Landau level spectrum
in gapped graphene under magnetic fields. The energy dispersion of the first several Landau
levels as a function of the magnetic field strength shows distinct behavior for different bandgap
values. For pristine graphene (A = 0), the zeroth Landau level remains at zero energy
regardless of the magnetic field strength, exhibiting a characteristic anomalous quantum Hall
effect signature. In contrast, gapped graphene shows the zeroth Landau level split
symmetrically about zero energy, with Eg = +A.

Table 1: Energy separation between selected Landau levels for different system parameters

Band Gap A | Magnetic Field B | E;4 — Eg4 Eyr —Ei4 Ei+ —Ep-
(meV) (T) (meV) (meV) (meV)

0 5 41.3 22.8 41.3

0 10 58.4 32.2 58.4

50 5 63.2 22.5 91.3

50 10 75.8 31.9 108.4

100 5 110.8 21.8 160.8

100 10 117.2 31.2 167.2

The data in Table 1 demonstrate that the bandgap introduces asymmetry in the transition
energies. The energy difference E;, — E,_ (inter-band transition) increases substantially with
the band gap, whereas intra-band transitions such as E,, — E;, remain relatively insensitive

to A. This behavior has important consequences for the optical absorption and plasmon
excitation spectra.
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Figure 3: Landau Level Energy Diagrams and Allowed Transitions in Gapped GrapheneatB=10T

Solid: Conduction Band (s=+1)  Dashed: Valence Band (s=-1)  Arrow Thickness: Relative Probability
(a) A =0 meV (Pristine Graphene), B=10T (b) A =50 meV (100 meV total gap), B=10T () A =100 meV (200 meV total gap), B=10T
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Figure 3: Landau Level Energy Diagrams and Allowed Transitions in Gapped Graphene at B=10T

Figure 3: showing Landau level energy diagrams for three cases: (a) A=0 meV, B=10 T, (b)
A=50 meV, B=10 T, and (c¢) A=100 meV, B=10 T. Use horizontal lines to represent energy
levels and arrows to show allowed transitions with their corresponding energies. Include
zoomed insets highlighting the asymmetry introduced by the band gap.

3.2 Dynamical Polarization Function: Frequency Dependence

The frequency-dependent polarization function I1(qg, w) exhibits distinct features arising from
the inter-Landau-level transitions. The imaginary part of the polarization function, which is
directly related to the absorption spectrum and plasmon damping, exhibits a characteristic
behavior for a fixed momentum transfer ¢ = 0.1/lg at B = 10T.

For pristine graphene (A = 0), the absorption spectrum showed a series of sharp peaks
corresponding to transitions between the Landau levels. The selection rules allow transitions
with An = %1, leading to peaks at frequencies w,, = (E,4+; — E,)/A. The peak at the lowest
frequency corresponded to the n = 0 = n = 1 transition in the conduction band.

Introducing a bandgap (A = 50 meV) shifts the absorption threshold to higher energies. The
lowest energy peak corresponds to the interband transition Ey_ — E; 4, which occurs at
Ohreshold = (E1,+ — Eg-)/A = 91 meV for the parameters considered. This represents a
substantial blue shift compared to that of pristine graphene. Additionally, the relative peak
intensities were modified owing to changes in the form factors |F,,/(q)|? stemming from the
altered pseudospin structure of the eigenstates.
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Table 2: Peak positions in Im[I1(g, w)] and their assignments

A B Peak 1 Peak 2 Peak 3

(meV) | (T) | (meV) | Assignment | (meV) | Assignment | (meV) | Assignment
0 10 | 584 0—1(CB) |90.6 1-2(CB) | 116.2 2—3 (CB)
50 10 | 108.4 0—1* 134.0 0 —1* 165.9 17—2*

100 10 | 167.2 0—1* 175.6 0 —1* 206.8 17—2*

CB denotes the conduction band, and 0 < el > —1* indicates the inter-band transition from the
valence band zeroth level to the conduction band first level.

— ¥ gy ) Bl | P— T 13 T T L
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Figure 4: Imaginary Part of Dynamicaly Polarization Function vs. Energy for Different Band Gaps atB=10T
Peaks | 584meV  584meV  906meV  1162meV  167.2meV 1756 meV 206.8 meV
f (meV) 0-0 01 152 2-3 01" 0*->1* 1°52*

Figure 4: Showing Im[I1(q,®)] versus ho for three different band gaps (0, 50, and 100 meV)
at fixed B=10 T and g=0.1/1s. Use different line styles or colors for each case, with vertical
dashed lines marking peak positions. Include annotations labeling the transitions
corresponding to each peak as listed in Table 2.

3.3 Momentum Dependence and Screening Properties
The static polarization function I1(q, 0), which determines the screening efficiency, exhibits a
strong momentum dependence modulated by both the magnetic field and the band gap. The

magnitude |T1(q, 0)| as a function of momentum transfer exhibits systematic variations with
parameter combinations.
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In the small momentum limit (qlg <« 1), the static polarization follows approximately:
(g, 0)| ~ Mo + a(qlp)?

where Il is the zero-momentum polarization and a is a coefficient that depends on A and B.

Our numerical results yielded the following results.

Table 3: Static polarization characteristics

(10)

A (meV) | B(T) | My (1072e2/Avg) | a (1072e%/hvg) | Screening length Ag (nm)
0 5 3.42 1.18 12.3
0 10 2.41 0.84 17.4
50 5 2.87 1.05 14.6
50 10 2.03 0.75 20.7
100 5 2.15 0.88 19.5
100 10 1.52 0.63 27.6

The screening length was estimated as Aq ~ 1/(qrre?) where qpp is the Thomas-Fermi
screening wave vector. The data reveal that increasing the bandgap reduces the polarization
magnitude and consequently increases the screening length, indicating weaker screening. This
is because the band gap reduces the density of states available for screening processes.

Static Polarization Function |1(q,0)] for Gapped Graphene
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Figure 5: Showing |[1(q,0)| versus q Is for different combinations of A and B. Use a 3x2 panel
layout with rows corresponding to different A values (0, 50, 100 meV) and columns
corresponding to different B values (5, 10 T). Include fits to Equation (10) as dashed lines.
Add an inset showing screening length A versus A for both B values.

3.4 Temperature Effects on Polarization

While most of our analysis focused on low temperatures (T = 10 K), we examined the effects
of temperature on the polarization function for completeness. The temperature dependence of
the static polarization at a fixed q = 0.05/lg for B=10T and A = 50meV shows a
characteristic behavior.

At low temperatures (T < 50 K), the polarization remains essentially constant, indicating that
the thermal broadening of the Fermi-Dirac distribution is negligible compared with the Landau
level spacing. As the temperature increases beyond kgT ~ Aw., the thermal excitations
become significant, leading to

¢ Smoothing of sharp features in the absorption spectrum
e Gradual increase in the static polarization due to thermally excited carriers
o Emergence of additional absorption channels from thermally populated Landau levels

For the parameters considered (B = 10T, corresponding to Aw,. = 58 meV), significant
temperature effects appear above T = 300 K.

Temperature Dependence of Polarization in Gapped Graphene (A=50 meV, B=10T)
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Figure 6: Showing the temperature dependence of (a) static polarization I1(q=0.05/1_B.,0)
and (b) imaginary part of polarization at fixed frequency ho=100 meV. Plot both
quantities versus temperature from 10 K to 500 K. Include vertical dashed line at T =
ho_c/k B= 670K for reference. Add insets showing Fermi-Dirac distribution at selected
temperatures.

3.5 Phase Diagram of Collective Excitations

By analyzing the zeros of the dielectric function €(q, w) = 1 — V(q)II(q, w), where V(q) =
2me?/(qk) is the Coulomb interaction (k is the dielectric constant of the substrate), we
determine the plasmon dispersion relations. The plasmon energy as a function of momentum
for different combinations of A and B revealed several important features.

The plasmon dispersion exhibits several noteworthy characteristics:

1. Inter-Landau level plasmons: At low momenta, the plasmon energy approximately
follows wp, o \/a, which is characteristic of two-dimensional systems. The coefficient of
this square-root dependence increases with the magnetic field but decreases with the
bandgap.

2. Plasmon-Landau level coupling: When the plasmon dispersion crosses the inter-Landau

level transition energies, strong coupling occurs, leading to avoided crossings and
hybridization of plasmon and single-particle excitation modes.

3. Band gap-induced modifications: Opening a band gap shifts the plasmon dispersion to
higher energies and modifies the damping regions where plasmons can decay into
electron-hole pairs.

Table 4: Plasmon characteristics at q = 0.1/l

A (meV) | B(T) | wp (meV) | Quality Factor Q | Damping Rate I' (meV)
0 5 125.3 8.7 14.4
0 10 167.8 12.3 13.6
50 5 138.5 10.2 13.6
50 10 182.4 15.1 12.1
100 5 155.7 13.8 11.3
100 10 201.9 19.4 10.4

The quality factor Q = w,/(2I') measures the plasmon lifetime relative to the oscillation

period. Higher band gaps generally lead to increased quality factors, suggesting reduced
damping and longer-lived collective excitation.
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Plasmon Dispersion and Quality Factors in Gapped Graphene Under Magnetic Fields

(a) Effect of Band Gap (B=10 T fixed) (b) Effect of Magnetic Field (A=50 meV fixed)
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Figure 7: Showing (a) plasmon dispersion o p(q) for different A at fixed B=10 T, and (b)
plasmon dispersion for different B at fixed A=50 meV. Include shaded regions indicating the
electron-hole continuum where plasmons are strongly damped. Add arrows pointing to
avoided crossings where plasmon dispersion approaches Landau level transition energies.
Include an inset showing quality factor Q versus A for both B values.

3.6 Comparison with Experimental Observables

Our theoretical predictions can be compared with experimentally accessible quantities such as
the optical conductivity o(w) and electron energy loss spectroscopy (EELS) intensity. The
optical conductivity is related to the polarization function as follows:
ie’w
o(w) = e [M(q, w) — T1(q, 0)]q-0 (11)

The calculated optical conductivity for various parameter combinations shows
characteristic inter-LL peaks that are clearly visible, with peak positions and intensities in
qualitative agreement with experimental magneto-optical measurements on gapped
graphene systems reported in recent literature [10,11].
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Figure 8: Optical Conductivity ol Gapped Graphene Under Magnetlc Flalds and Comparlson with Experlmental Data
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Figure 8: Ontical Conductivitv of Gapped Graphene Under Magnetic Fields and Comparison with Experimental Data

Figure 8: showing calculated optical conductivity Re[c(w)] for the same parameter sets as in
Table 2. Use the same vertical lines to mark transition energies. Include experimental data
points from references [10] and [11] for comparison where available. Add an inset showing
the relationship between optical conductivity and polarization function from Equation (11).

4. Discussion
4.1 Physical Interpretation of Results

Our comprehensive investigation of dynamical polarization in gapped graphene under
magnetic fields reveals several important physical phenomena emerging from the interplay
between bandgap opening and Landau quantization. Modification of the Landau level
spectrum by the band gap fundamentally alters the available phase space for electronic
transitions, which manifests in the polarization function through modified transition energies
and selection rules.

The suppression of low-energy collective excitations with increasing band gap arises from the
reduced density of states near the Fermi level. In pristine graphene, the vanishing density of
states at the Dirac point leads to unusual screening properties compared with conventional
two-dimensional systems [9]. The introduction of a band gap further reduces the available
electronic states for screening, leading to increased screening lengths and modified Thomas-
Fermi behavior. This has practical implications for Coulomb interactions in gapped graphene
devices, affecting phenomena ranging from impurity scattering to many-body correlation.
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The discrete nature of Landau levels introduces resonance structures in the polarization
function at energies corresponding to interlevel transitions. These resonances become
particularly pronounced when the magnetic length Iz becomes comparable to the typical
interparticle spacing, corresponding to fields of several Tesla for typical carrier densities. The
form factors |F,,,/(q)|? encode geometric information about the spatial structure of the Landau
level wavefunctions, and their momentum dependence determines which transitions contribute
most strongly at a given momentum transfer.

4.2 Comparison with Existing Literature

Our findings extend the previous theoretical work on polarization in graphene systems. Hwang
and Das Sarma [9] investigated the polarization function in pristine graphene without magnetic
fields, demonstrating an unusual \/a dependence of the plasmon dispersion. Gusynin and
Sharapov [6] studied Landau levels in pristine graphene under magnetic fields, but did not
address gapped systems or dynamical responses. More recently, Gomes et al. [12] examined
static screening in gapped graphene without magnetic field effects.

Our results show that the combined presence of the band gap and magnetic field creates
qualitatively new physics not captured by considering these effects separately. For instance,
the asymmetry in the interband transition energies (Table 1) arises specifically from the
interplay between these two factors and cannot be predicted from either pristine graphene
under magnetic fields or gapped graphene without fields.

Experimental measurements of magneto-optical properties in gapped-graphene systems
remain limited but are emerging. Kuzmenko et al. [13] reported infrared magneto-
spectroscopy of graphene, identifying Landau level transitions, while Jung et al. [10]
investigated substrate-induced gaps. Our predicted absorption peak positions (Table 2) are
consistent with the energy scales observed in these experiments, although direct quantitative
comparison requires careful consideration of disorder, substrate effects, and finite-size effects
that are not included in our idealized theoretical model.

4.3 Implications for Graphene-Based Devices

The tunability of dynamical polarization through bandgap engineering and magnetic field
applications offers potential for novel device applications. Magneto-optoelectronic devices
that exploit the strong magneto-optical response can enable tunable infrared detectors or
modulators. The dependence of the plasmon energies on both A and B (Table 4) suggests
possibilities for electrically and magnetically tunable plasmonic devices operating in the
terahertz to mid-infrared range.

The enhanced plasmon quality factors at higher band gaps (Table 4) indicate reduced damping,
which is favorable for applications requiring long-lived collective excitations, such as
plasmonic waveguides or resonators. However, the trade-off between the quality factor and
the operational frequency must be considered for specific applications. The screening length
variations (Table 3) are relevant for understanding the interaction effects in quantum Hall edge

Nanotechnology Perceptions 20 No.4 (2024) 976-994



991 Analytical And Numerical Study Of ... Upendra Kumar Giri et. al.

states and could affect the performance of quantum Hall-based resistance standards or
topological quantum computing proposals.

For photonic and optoelectronic applications, strong absorption peaks at inter-LL transition
energies can be exploited for wavelength-selective photodetection. The tunability of these
peaks through magnetic field adjustment provides a mechanism for spectral selectivity that
does not require complex fabrication techniques. The calculated optical conductivity provides
direct guidance for interpreting the experimental absorption and transmission measurements
in future device characterization studies.

4.4 Limitations and Approximations

Several approximations in our theoretical treatment warrant further discussion. First, we
employed the Dirac cone approximation, which is valid for energies significantly smaller
than the bandwidth (~3 "eV" ). For large band gaps or high Landau levels, corrections
from the full tight-binding band structure may be relevant [14]. Second, we neglected the
disorder effects, which can broaden the Landau levels and modify sharp features in the
polarization spectrum. In realistic samples, disorder-induced broadening typically ranges
from to 1-10 meV depending on the sample quality [15].

Third, our random phase approximation treatment neglects exchange-correlation effects
beyond the mean-field level. Quantum Monte Carlo studies of pristine graphene have
shown that electron-electron interactions can significantly modify the single-particle
spectrum at low densities [16]. However, for the intermediate coupling regime typical of
graphene on standard substrates, the RPA provides a reasonable first approximation.
Fourth, we considered only perpendicular magnetic fields; in-plane field components
would modify the electronic structure differently and introduce additional complexity
[17].

The temperature effects in our treatment are incorporated through the Fermi-Dirac
distribution, but do not account for phonon-mediated interactions or temperature-
dependent band gap modifications that might occur in some gapped graphene systems.
For substrates with strong electron-phonon coupling, additional temperature-dependent
renormalization effects can occur [18].

4.5 Future Research Directions

Several extensions of this work would provide valuable insights and address current
limitations. First, incorporating disorder effects through the self-consistent Born
approximation or other approaches would enable a more direct comparison with
experiments on realistic samples. Disorder not only broadens the spectral features but can
also lead to localization effects that modify the nature of the quantum Hall states in gapped
graphene [19].

Second, investigating many-body corrections beyond RPA using more sophisticated
techniques, such as GW approximation or time-dependent density functional theory,
would refine predictions for strongly interacting regimes. The recent progress in applying
these methods to graphene systems [20] suggests the feasibility of such extensions. Third,
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examining spatially varying bandgaps, as might arise from strain engineering or patterned
substrates, would address a broader class of experimental systems and potentially reveal
new collective phenomena at domain boundaries.

Fourth, extending the analysis to bilayer and few-layer gapped graphene systems will
connect to another active area of research. Bilayer graphene under perpendicular electric
fields exhibits tunable bandgaps with additional orbital degrees of freedom, leading to
richer Landau level structures [21]. Fifth, investigating the dynamical polarization in the
quantum Hall regime at higher magnetic fields, where fractional quantum Hall physics
may emerge, represents an exciting frontier. Recent theoretical predictions of fractional
quantum Hall states in graphene [22] have motivated the exploration of how bandgaps
affect these exotic phases.

Finally, computational studies incorporating realistic device geometries, including edge
effects, contacts, and finite-size systems, will facilitate the translation of our findings.
Multiscale simulation frameworks that combine our continuum theory with atomistic
details at interfaces can provide comprehensive device-level predictions.

5. Conclusion

This study presents a comprehensive analytical and numerical investigation of the
dynamic polarization in gapped graphene subjected to external perpendicular magnetic
fields. By combining the Dirac equation formalism with random phase approximation and
extensive numerical simulations, we mapped out the rich physics arising from the
interplay between bandgap opening and Landau level quantization.

Our key findings demonstrate that the band gap fundamentally modifies the Landau level
spectrum, shifting the zeroth level to finite energies and introducing asymmetry in the
transition energies. The dynamical polarization function exhibits pronounced resonance
structures at inter-LL transition energies, with both peak positions and intensities
sensitively dependent on the band gap parameter. The static polarization magnitude
decreases with increasing bandgap, leading to enhanced screening lengths and a weaker
screening efficiency compared to pristine graphene.

The plasmon dispersion relations reveal complex behavior, including avoided crossings
with Landau level transitions and enhanced quality factors at larger bandgaps. These
collective excitations offer potential for tunable terahertz and infrared plasmonic devices.
Temperature effects remain negligible at cryogenic temperatures, but become significant
when the thermal energy becomes comparable to the Landau level spacing, providing
guidelines for experimental operating conditions.

Our theoretical predictions provide testable predictions for magneto-optical experiments,
and offer guidance for designing next-generation graphene-based optoelectronic and
photonic devices. The systematic exploration of the parameter space encompassing band
gap values from 0 to 100 meV and magnetic fields from 1 to 20 Tesla establishes a
comprehensive phase diagram of the collective electronic behavior in gapped graphene.

These findings contribute to the fundamental understanding of two-dimensional Dirac
materials under external perturbations and highlight the rich physics accessible through
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bandgap engineering in graphene systems. The tunability of the electronic and optical
properties through combined electrical and magnetic control opens new possibilities for
quantum material engineering and advanced electronic applications.
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