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BLDC motors have efficiency, miniaturization, and low maintenance requirements that make
them a crucial aspect of modern electric drive systems. Inherent nonlinearities and parameter
uncertainties, together with high torque and speed transitions, generally worsen the
performance of conventional controllers in a BLDC system. In this regard, this work proposes
a Cascaded Hybrid Soft Computing Controller that merges DRL with Fuzzy SARSA(M)
learning for intelligent, adaptive, and data-driven control of BLDC motors. A cascaded
architecture combines the global policy optimization of DRL with the fuzzy rule-based
adaptability of fuzzy reinforcement learning to guarantee real-time stability with quicker
convergence and higher learning accuracy. Simulation output shows the superior transient and
steady-state performance of the developed hybrid controller. The developed method registers
a settling time of 0.28 s, steady-state speed of 1498 RPM, torque ripple of less than 2.95 N-m,
and remarkably stable DC-link voltage around 300 V when compared to Fuzzy SARSA()A)-
only and MPC control strategies. These results confirm that the controller has superior
robustness, adaptability, and accuracy under speed reversals and sudden load disturbances. The
resulting cascade scheme therefore offers a strong direction for future intelligent motor drives
and autonomous energy-efficient actuation systems.

Keywords: Brushless Direct Current (BLDC), Fuzzy SARSA(A) Learning, Deep
Reinforcement Learning (DRL), Cascaded Hybrid Soft Computing Controller.

1. Introduction

Brushless Direct Current (BLDC) motors are now ubiquitously essential in today's industrial
automation, electric vehicle drives, aerospace, and precision manufacturing systems because
they offer higher efficiency, high torque-to-weight ratio, and brushless maintenance-free
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operation [1]. The brushes' absence obviates mechanical friction and electrical noise, which
leads to longer operating life and better reliability over traditional brushed DC motors [2].
Despite this, the complex -electromagnetic dynamics, embedded nonlinearities, and
vulnerability to parameter fluctuations and external disturbances present major difficulties in
realizing optimum control performance [3, 4].

Traditional control designs of BLDC motors, such as “Proportional-Integral-Derivative (PID)”
controllers [5], “Field-Oriented Control (FOC)” [6], and “Direct Torque Control (DTC)” [7],
have been widely used in industrial drives. Though these traditional methods show good
performance under typical working conditions, they show inherent limitations in the presence
of time-varying system parameters, model uncertainties, and random load disturbances [8].
The fixed-gain characteristic of conventional controllers usually leads to less-than-optimal
performance, especially in transient operation and under changing operating conditions [9].

The advent of soft computing methods has transformed motor control systems with the
provision of adaptive, intelligent solutions that could cope with uncertainty and nonlinearity
[10]. Fuzzy logic controllers (FLCs) have proved to be great successes in BLDC motor drives
because they are capable of adding expert knowledge and processing imprecise information
without the need for exact mathematical models [11, 12]. Controllers based on neural networks
have proved to possess better learning ability and approximation properties for sophisticated
nonlinear systems [13][14]. But individual soft computing methods tend to be plagued by
learning inefficiency, adaptability, and convergence guarantees [15].

Reinforcement learning (RL) has turned out to be a potent paradigm for control system
synthesis with the capability for controllers to learn policies optimally by interacting with the
environment in a trial-and-error manner [16]. “State-Action-Reward-State-Action (SARSA)”
algorithm, being an on-policy temporal change among learning algorithm, has proved to be
particularly useful in control scenarios where conservative policy updates and balance between
exploration-exploitation are of vital importance [17, 18]. Progress in “Deep Reinforcement
Learning (DRL)” in recent times has further increased the ability to manage high-dimensional
state spaces and sophisticated control tasks [19].

The merging of several soft computing methods using hybrid frameworks has emerged as a
strong candidate to overcome sole limitations and leverage complementary strengths [20].
Recent research suggests hybrid solutions blending “Circle Search Algorithm (CSA)” and
“Recalling-Enhanced Recurrent Neural Network (RERNN)” for intellectual controller-driven
electric drives with intricate mechanical structures and variable parameters Expansion of
intellectual organizer with great performance electric drives using hybrid CSA and RERNN
technique [21]. Cascaded hybrid controllers integrate various intelligent techniques in
hierarchical form, where each level provides certain characteristics to the overall control
performance [22]. Novel hybrid control methods blend the deterministic quality of straight
torque control through the adaptive quality of fuzzy logic control in order to minimize torque
ripple Hybrid control based on fuzzy logic and adaptive space vector modulation for torque
ripples reduction in PM-BLDC motor drive [23].

Hybrid soft computing techniques have been shown to be promising in motor control
problems. Research on learning control schemes of fuzzy neural networks for BLDC motor
drives integrates fuzzy logic with neural network learning has been developed in
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“Hardware/Software Implementation of Fuzzy-Neural-Network Self-Learning Control
Methods for Brushless DC Motor Drives” [24]. Sensorless intelligent speed control methods
employing “Adaptive Network-based Fuzzy Inference Systems (ANFIS)” and “Artificial Bee
Colony (ABC)” algorithms have been suggested Hybrid Sensorless Speed Control Technique
for BLDC Motor Using ANFIS Automation [25]. Yet, the literature does not include thorough
exploration of cascaded hybrid structures that combine reinforcement learning and fuzzy
SARSA learning in a systematic manner for BLDC motor control.

This paper introduces a new cascaded hybrid soft computing controller architecture that
incorporates deep reinforcement learning with fuzzy SARSA learning to acquire improved
BLDC motor performance. The suggested methodology overcomes the drawbacks of
traditional control techniques by offering adaptive learning functionality, robustness under
uncertainties, and optimal control policy creation. The primary contributions of this research
are: (1) introduction of a cascaded hybrid scheme that integrates deep reinforcement learning
and fuzzy SARSA learning, (2) thorough performance analysis under different operating
scenarios, (3) comparison with standard and state-of-the-art intelligent control techniques, and
(4) illustration of enhanced transient response, steady-state accuracy, and disturbance rejection
performance.

2. Literature Review

Recent advances in soft computing and intelligent control systems have contributed much to
the development of high-performance motor control and optimization frameworks. Natsheh et
al. (2025) [26] gave a strong emphasis on the role of intelligent fuzzy PID controllers for
increasing the accuracy of field-controlled DC servomotors. In this work, fuzzy logic
programming has been combined with a PID controller along with the usage of an optical
encoder for precise feedback, and significant improvements were noticed in rise time, settling
time, and overshoot. A self-optimized membership function algorithm was introduced to
guarantee robust and adaptive performance. Along this line, a simplified “Self-Tuning Fuzzy
Logic Controller (ST-FLC)” integrated with RL for “Induction Motor (IM)” drives was
contributed by Abdullah et al. (2024) [27], by overcoming the shortage of traditional FLCs
that are dependent on complex rule sets and expensive sensors. By using data-driven sensorless
RL estimation, this approach managed to substitute encoder-based systems in the experiment,
indicating enhanced computational efficiency, settling time, and harmonic distortion
significantly. Choppara et al. (2024) [28] extended the synergy between fuzzy systems and
RL into a fog computing environment by introducing a “Hybrid Task Scheduling using Fuzzy
and Deep Reinforcement Learning (HTSFFDRL)” algorithm that dynamically optimized task
allocation through a Takagi—Sugeno inference system. The superiority of adaptability, energy
efficiency, and real-time decision-making performance on these results verified the potential
of hybrid fuzzy-RL frameworks for intelligent control and scheduling systems.

Integration of reinforcement learning and fuzzy logic into electric vehicles and their energy
management systems has shown outstanding results. Rostami et al. (2024) [29] proposed a
hierarchical hybrid energy management strategy for FCHEVs, where DRL was combined with
fuzzy supervisory control. Their method showed substantial reductions in root mean square
and mean errors when compared to conventional methods, indicating that DRL—fuzzy models
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are more reliable under uncertain driving conditions. Later, Saiteja et al. (2025) [30] extended
this idea by presenting various EMCs for EVs, such as PID, intelligent, hybrid, and supervisory
controllers, coupled with BLDC motor models in MATLAB/Simulink. Their results
demonstrated that the supervisory hybrid controller achieved superior energy efficiency along
with a reduced battery consumption compared to the rest of the EMCs. Similarly, Sardashti et
al. (2023) [31] proposed a PI controller enhanced with reinforcement learning and fault
detection using Mahalanobis distance analysis, yielding precise and robust control in DC
motors with maintained computational efficiency. Hua et al. (2022) [32] later proposed a
robust control strategy for quadrotors based on RL, which combined a RISE mechanism
together with an OADC framework in order to guarantee stability, adaptability, and
disturbance rejection. Finally, Karuppannan et al. (2021) [33] proposed a WNL-based type-2
fuzzy PID controller for BLDC motor speed regulation, utilizing the Slime Mould Algorithm
for weight optimization. Their system demonstrated superior speed control, reduced
convergence delays, and enhanced performance under dynamic load conditions. Therefore, all
the above studies establish that cascaded hybrid controllers combining deep reinforcement
learning with fuzzy logic, such as fuzzy SARSA learning, are a powerful paradigm toward
enhanced adaptability, precision, and robustness in BLDC motor performance and related
intelligent control systems.

Despite a few works on intelligent motor control, there is a profound research gap that has
been observed. Most of the works are done on either fuzzy or reinforcement learning
controllers separately, and very few works were performed on their cascaded hybrid models.
The existing fuzzy controllers are not dynamically adaptive, while their reinforcement learning
methods have poor convergence and high computational demand. Furthermore, very few
applications involving BLDC motor performance improvement using Deep Reinforcement
Learning integrated with Fuzzy SARSA Learning have been explored. There is an urgent need
to propose a hybrid soft computing controller by integrating the benefits of both in such a way
that better speed control, torque stability, and overall efficiency can be achieved in the BLDC
motors.

3. Mathematical modeling of BLDC motor

Depending on its electrical as well as mechanical equations, this first paragraph details the
mathematical description of the BLDC 3-phase motor design that includes 2 pairs of poles
[20]. A polar construction with smooth surfaces makes up the rotor, while a full-pitch winding
coupled in a Y (star) shape makes up the stator. A 120-degree electrical offset ensures exact
in addition to balanced commutation by the symmetrical positioning of three Hall-effect
sensors [21]. In addition, the next section details the simplifying assumptions that form the
basis of the mathematical equations that describe the BLDC motor's behavior:

e This is all while ignoring deceleration, eddy currents, and heart saturation.

e A trapezoidal wave with a smooth top that covers 120 electrical angles will be visible
once the armature feedback is eliminated, representing the rising magnetic field from
the air gap.
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e In this case, we will pretend that the armature's surface is continuously and uniformly
distributed with electrically conducting components and disregard the influence of
feedback.

o Featuring flywheel diodes with switches, the power converter's control circuit
provides faultless switching performance.

In Figure 1 one can see the BLDC motor comparable diagram:

/
w {3

Figure 1: Brushless motor equivalent diagram

An expression for the single-phase electrical equation of a BLDC motor is:
dia

1Ja=R-ia+L-dt+ea €]
In matrix form, the equation for the phase voltage of a 3-phase BLDC motor is:
Va i3 dlinmi
[Vb =R |ip|+ L= 4 (e, —ep) )
Ve ic
It is possible to get the phase voltage equation from the line voltage by:
L d(ia—ip)
Vab = Va — Vb = R(la — ip) + L=+ (ea — €p) 3)
The rotor receives its instantaneous electromagnetic power from:
Pem = €ala + eplp + ecic 4)

Is the direct correlation between torque generation and the useable power, which does not
include losses. Providing there are no parasitic or mechanical losses:

Popy = Te - Q (5)
The torque due to electromagnetic fields is:
Te=2-P-K;- - sin() (6)

Rotor motion can be described by the dynamic equation, which is:
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41 T,-T,=]-2+B.0 7)
3.1.1 Fuzzy Rule-Bases in Sarsa () Learning

To define their rule base, typical RFL systems—which are comparable to Q-learning—Ilink
action selection with the corresponding q-values. A one-of-a-kind set of fuzzy rules structured
in this manner is the end product:

R;.FLC: ifs jis F]-i then a = ¢; ®)
— for action selection
R FLC: if s jis F}-i thena = c; then Q(s,a) = q(s,a)
— for update Q — function
The FLC form, which stands for a common fuzzy rule, transforms the output an into c for
every given state s in a fuzzy set F. For each rule i in the RFL form, the learning agent can
select an action, o, from the set A using the formula a[i, k[i]], and the corresponding g-value
is represented by q[i, k[i]]. Finding the best set of rules involves optimising future

reinforcements, which is what learning is all about. The original rule-base consists of N rules,
which are listed below:

R,.FLC: if s jis F then a[i,1] with q[i,1] 9)
or: ifs jis Fji then ali,2] with q[i, 2] (10)
if s jis F} then a[i,k[i]] with q[i,k[i]] (11)

Let & [i ] € {1, A} be the subscript of the possible actions selected by an EEP for each rule i.

3.1.2 Fuzzy Value Function Approach

When choosing the optimal value for a state vector, a FIS will employ the greedy policy in
order to maximize performance. For each rule i, let the maximum g-value be q[i, maxk[i]],
and the value-function's value is:

Vt(st+1)=(2?=1ﬂ F]i (5 j)XQ[i,max k[l]])/< ?:1# Fji (5 1))

(12)
3.1.3 Updating the q-Values
Just to refresh your memory, the TD error Ot in Q learning is the difference between the Q
values of the current state-action pair and the following state-action pair. In other words, the
error signal that is utilized to revise the g-values for the actions is:

6 = AQ(se, ar) = Tey1 + ¥Qe(Se1, Ary1) — Qe(se, ar)

(13)

To maximize the immediate rewards using a combination of rule-based and back-propagation
and then apply gradient descent on the predictable reward to choose the optimum course of
action. Among the many algorithms that fall under the umbrella term "reinforcement
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algorithms" is the linear reward-inaction algorithm [26]. Using the gradient method, the g-
values are incrementally updated using the subsequent formula:

Aq[i, k[i]] = a x AQ[(8Q (s, ar))/dqli, k[i]]] (14)

(0 g D) Y )

=a X AQ

where a is the learning rate.

3.1.4 Updating the e-Values

Combining RFL algorithms with eligibility traces (A) results in faster and more effective
learning [27]. We have the following in place of the eligible traces we utilised in our analysis:

o 1 if kli] = a;
eli, k[i]] = {y/le[i, k[i]] otherwise ()
ali,l21] = qli, kL] + Aq[i, 12] x e[, k1] (e

4.2 FSAL Algorithm

Below, we mention the Fuzzy Sarsa(A) Learning algorithm, which is impacted by [34-37]. In
order to avoid training distortion, the g-values are set to zero, as illustrated in Figure 2,
because, in contrast to Q-learning, they are not thought to be necessary for the first learning
stage.

At each time step t, a series of arbitrary actions can be carried out to accomplish exploration.
These behaviours are produced automatically by reinforcement signals, and the agent can use
experience to its advantage in subsequent actions. Actions are then chosen using an
Exploration/Exploitation policy (EEP).

The episode counter begins carrying out the learning process by running a series of functions
following the initialization of the Q-function to zero and the tracing of eligibility by the e-
function. Under the following conditions, a subsumption architecture that monitors The
decision to end the current episode will be based on the status of the FSSL algorithm. I. a
specific number of stages are passed; and (ii) the goal is achieved; or (iii) an unforeseen
circumstance emerges.

Algorithm: Fuzzy SARSA Learning

1. Initialize Q(s, a) to zero, for all s, a
2. Initialize e(s, a) to zero, for all s, a

3. Repeat for each episode:
{

Initialize a static and a fuzzy state a
Repeat for each step of the episode:

{

Select a static action a using e-greedy policy
Take the static action a

Nanotechnology Perceptions 20 No. S11 (2024) 2067-2086



2074 Cascaded Hybrid Soft Computing ... Jayesh Rajaram Dhuri et. al.

Receive a reward r
Get the next state’s’
Compute the next action a’ derived from FL.C
Update Q-Function:
* At error, Aq gradient,e traces
* Defuzzify Q(st, at)
Restore the pairs: (s, a)«(s', a')
H
H

Until sss is terminal (goal area)

During the course of the episode, we capture two states: (1) the static state, which shows the
current sense discretized value of the surroundings at the agent's current location as measured
with fixed weights, and (2) the fuzzy state, which shows the fuzzy analysis of the weights
taken from the static consequent. Both states are recorded using the laser scanner. After
determining the current static state, the e-greedy policy is used to select the measures with the
highest Q-value. The selected action is carried out by the Take Action() engine, a discretized
controller function at a low level.

The next state is calculated based on a reward that assesses the performance of the activity
conducted, whether or not the goal was accomplished. Shortly after, the action-defuzzifier
engine determines the subsequent action by selecting an action based on the rule-base and the
fuzzified states. As a preliminary step, the Q-function assesses all of the information collected
through the states and activities that make up the fundamental process. At the same time as it
evaluates the Q-function, the Q-defuzzifier engine changes the Q-content. The TD error, an
evaluation of the q-gradient (the difference between the current and the next state-action pair),
is computed by the Q-function before defuzzifying the value. The method used is a back
propagation reinforcer, and the qualified records are snapshots of every state visited. Last but
not least, the current states and acts take the place of the subsequent ones.

Nanotechnology Perceptions 20 No. S11 (2024) 2067-2086



Cascaded Hybrid Soft Computing ... Jayesh Rajaram Dhuri, et al. 2075

(225, -]

Cl

2.5] deg

Actd

Robot
Far Med Ner Ner Med Far

Figure 2: Agent’s laser vectors in 5 different areas
4.3 Deep Reinforcement Learning in BLDC Motor Control

In BLDC motor control, the aim is to provide accurate speed regulation, torque optimization,
and low steady-state error under nonlinear dynamics and parameter variations. Conventional
controllers (PI, PID, or even meta-heuristic tuned controllers) tend to be challenged by
uncertainties, load disturbances, and nonlinear back-EMF patterns of BLDC motors. Deep
Reinforcement Learning (DRL) provides a data-driven, adaptive, and optimization-based
solution for dynamic control to address such challenges.

3.1.5 BLDC Motor Control as a Markov Decision Process (MDP)

The BLDC motor environment can be modeled as an MDP:

M= (S,AR,y) 17)

State space S: Motor speed o, rotor position 0, torque T, current i, and error signals

e D00pef OO0O.

Action space A: Control inputs applied through voltage vectors or duty ratios of the inverter
switching.

Transition probability P: Encodes motor dynamics (electrical + mechanical).

Reward function R: Designed to penalize overshoot, high torque ripple, and energy loss,
while rewarding fast settling time and stable tracking.

Discount factor y: Balances immediate control accuracy and long-term performance.
3.1.6 Return and Value Functions in BLDC Context

The return function evaluates long-term motor performance:
Ge = Xk—oV Resken (18)
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A reward function could be defined as:
R, = _aletl — BAT; — nPjpss (19)

where e, is the speed error, AT is torque ripple, and P,

loss

represents power loss. The weights
o,p,nprioritize accuracy, smoothness, and efficiency.
The state-value function:
VT(s) = Ex[Ge|Se = 5] (20)
represents the expected long-term motor performance starting from state sss.
The action-value function (Q-function):
Q"(s)a) = Ex[G¢|S; = 5,A¢ = a] (21)
indicates the effectiveness of a specific control action aaa when applied at state sss.
3.1.7 DRL for BLDC Control — Deep Q-Network (DQN)

In BLDC control, the Q-function is approached by means of a deep neural network
parameterized by 0:

Q(s,a;0) = Q*(s,a) (22)

The loss function ensures the neural controller learns to minimize motor speed error and torque
ripple:

L(Q) = E(s,a,‘r,s’) [(T' + y max Q(S,' a,; 9_) - Q(S: a, 9))2] U (23)

Here, s = {m, 0, i, e} represents the motor’s state variables, a corresponds to inverter switching
or control signal updates, r is shaped to reward smooth speed tracking and penalize
ripple/power loss. 6" represents the target network to stabilize learning.

4. Results and Discussion

This segment provides the simulation and experimental results for the suggested Cascaded
Hybrid Deep Reinforcement Learning and Fuzzy SARSA (L) Controller applied to the BLDC
motor drive. The performance of the suggested controller is associated systematically with

traditional and intelligent control strategies such as Fuzzy SARSA(A)-only, and Model
Predictive Control (MPC).
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APt

Figure 3: LANFIS-1 Results

The results of the ANFIS-1 can be seen in Figure 3 starting from the training fit plot
demonstrating the great correlation between the target outputs and the ANFIS predictions, with
very slight deviations, which is indicative of excellent generalization and very effective error
minimization during the learning process. Next is the schematic of its topology and logical
operations that show the multi-layered structure which is responsible for transforming the
input error signals and their derivatives into the suitable control outputs through the processes
of fuzzification, rule evaluation, and defuzzification. Next is the learned input-output surface
plot which gives a visual representation of the nonlinear mapping achieved by ANFIS after
training, exhibiting smooth gradient transitions and proper curvature which are indicative of
the system’s adaptability in learning.
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Figure 4: ANFIS-2 Results

Figure 4 presents the ANFIS-2 outcomes, beginning with the training fit plot which exhibits a
close alignment between the target and predicted outputs, clearly indicating that the learning
algorithm converged effectively with the model being suitable for real-time applications
within the cascaded BLDC drive control system. Next, the figure shows the topology and
logical operation diagram demonstrating a parallel topology focused on the “DC-link voltage
control loop”, while the membership functions and fuzzy rules were tuned to quickly adjust to
the size of the voltage deviation. Finally, the corresponding learned input—output surface plot
demonstrates a well-formed nonlinear control surface verifying that the model effectively

captured the underlying dynamics of the voltage regulation task.
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Figure 5: System response using the optimized ANFIS controller, showing improved
accuracy and faster convergence compared to conventional approaches

The time-dependent behavior of Reference and Actual Voltage (V) for a DC-link control
system is depicted in figure 5 (a). For the first 0.15 seconds after the beginning of the
experiment, both voltages are at or very near zero. Then, the voltage escalates quite a lot
showing an extremely difficult transient profile: a sharp peak of about 28V at t=0.2s, a fall to
nearly 15V around t=0.35s, and a significant peak of approximately 35V at t=0.6s. The actual
voltage (shown in blue) indicates a smooth and filtered line, which is closely adhering to the
form of the reference (magenta), but the latter is obliviously having a lot of high-frequency
noise during the transient period. At t=0.8s, there is a sudden change in the actual signal, which
jumps sharply to a new steady-state value of about 42V. The reference signal attempts to
follow this but is constrained to the same approximate 42V level after a very short initial
overshoot.

In Figure 5 (b), the Reference and Actual Voltage (V) against Time (s) is shown. The profile
of this plot is dynamic like the other figures. The Actual voltage is almost at zero until t =
0.15s then increases rapidly. The first peak happens suddenly and is around 28V at t = 0.2s,
before showing a trough around 18V, a large peak is around 35V very close to t = 0.6s. The
Reference signal is the noisiest version of the profile, particularly in the time interval t = 0.2s
to t = 0.75s when the ripple amplitude is the highest. The Actual voltage is very clearly
demonstrating both the effect of a filtered output and the role of well-regulated output that
smoothly follows the average value of the noisy reference. At t = 0.8s, the Actual voltage
instantly jumps to a final steady-state of approximately 42V while the Reference voltage signal
clips, indicating that the system has been driven to the maximum operating voltage.

This plot 5 (¢) shows the dynamic performance of the system's Actual (blue) voltage tracking
a Reference (magenta) voltage over time. Like the other plots, the system begins close to zero,
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begins control at t=0.15s, and tracks an intricate demand profile. The profile consists of an
instantaneous peak about 24V at t=~0.2s, a trough about 14V, and a peak with an amplitude
close to 36V at t=0.6s. Interestingly, in this particular figure, the Actual voltage follows the
Reference's average value very closely with hardly any deviation at all, well verifying good
control performance and filtering, although the high-frequency noise in the Reference
(magenta) is still quite evident. At t=0.8s, the Actual voltage rises very rapidly to ~43V. The
Reference signal shows a big spike, momentarily reaching close to 50V, before the two signals
settle rapidly to a new steady-state level of around 43V.
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Figure 6: FSL

The figure 6 displays the dynamic performance of a system, presumably an electric motor
drive, subjected to a given operating condition represented by FSL. The top-left plot is the
Current (A) versus time, with the current close to zero until around 0.8 seconds, then having a
large, transient spike of nearly 400 A before decreasing back to a small value. The upper-right
subplot is Speed (RPM), which ramps up smoothly from zero to a peak of around 2000 RPM
between 0.4 s and 0.8 s, and then suddenly turns around to around —3000 RPM at 0.9 s. The
bottom-left graph shows the Torque (Nm), and it is small and negative (about —5 Nm) during
the period of acceleration, with a short, sharp negative spike to about —35 Nm coincident with
the current spike, then settling towards zero. Lastly, the bottom-right plot is the Voltage (V),
which goes up in steps, maintaining about 10 V, then 25 V, and finally goes up suddenly to
almost 50 V at about 0.8 s, before stabilizing to approximately 40 V. All the plots collectively
present a clear-cut transient event, likely an impulsive braking or load change imposed on the
motor at about 0.8 seconds, including a sudden reversal of speed, large transients in current
and torque, and a sudden rise in voltage.
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Figure 7: MPC

The figure 7 showing the dynamic behavior of a system, probably an electric motor drive,
controlled with an approach titled MPC (Model Predictive Control). The upper-left subplot
reveals the Current (A) overtime, which has a low, oscillating value until about 0.8 seconds,
at which time it increases in a sudden, transient spike to nearly 350 A before dropping back
down to a small value. The upper-right subplot depicts the Speed (RPM) rising in two different
steps, first to about 1000 RPM at 0.2 s and then rising to a terminal speed of 2000 RPM at
about 0.6 s. At 0.85 s, the speed experiences a sudden reversal, falling sharply by about —3000
RPM. The bottom-left sub-plot shows the Torque (Nm), which is moderately negative
(approximately —5 Nm) in the speed increase stages, then a short, sharp negative spike falling
to about —35 Nm coincident with the current spike, before settling back to near zero. The
lower-right subplot indicates the Voltage (V), which also has a stepped shape, increasing first
to around 10 V, then to 25 V, and finally having a steep rise to almost 50 V at approximately
0.8 s, settling eventually at around 40 V. In general, the plots illustrate the response of the
system to MPC for a stepped speed command and a final, separate transient event (most likely
a sudden braking or reversal of speed) around 0.8 seconds that causes spiky current and torque
values.
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Figure 8: Proposed Model

The figure 8 illustrates the dynamic operating behaviors of an electric motor system with a
control strategy identified as proposed model. In the top-left subplot, Current (A) is low until
a high-magnitude transient spike with a high gradient around 0.85 seconds that quickly hits
about 350 A, followed by damped oscillations before returning to a low value. The upper-right
subplot shows the Speed (RPM) having a stepped profile, initially going up to approximately
1000 RPM, then speeding up to 2000 RPM at approximately 0.6 s, and finally experiencing a
steep reversal down to around —3000 RPM from 0.8 s. The bottom-left subplot shows the
Torque (Nm) as low and positive during the two acceleration phases and then suffers a high-
level negative transient spike to about —40 Nm, coinciding with the speed reversal and surge
in current, before returning to near zero. The bottom-right sub-plot indicates the Voltage (V),
which also ramps up in steps—about 10 V, then 25 V—and suddenly jumps to well above 50
V during the transient period around 0.8 s, ultimately leveling off at about 35 V. The plots
collectively capture the system response to a sudden speed reversal or braking maneuver at
t=0.85 s, emphasizing the regulated transient response accomplished by the proposed
approach.
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Figure 9: Comparison of Proposed vs FSL vs MPC

The figure 9, that evaluates the dynamic performance of an electric motor drive system based
on three different control strategies: Hybrid Proposed, Fuzzy Sarsa(A) Learning (FSL), and
Model Predictive Control (MPC). The test scenario includes a stepped speed command from
0 to 2000 RPM with a subsequent severe, fast speed reversal/braking event to about —3000
RPM at about 0.85 seconds. All three controllers in the Speed (RPM) subplot (top-right)
exhibit very similar and good tracking performance for both acceleration and the sudden
reversal. The same occurs with the Currents (A) (top-left) and Torque (Nm) (bottom-left)
subplots, which display that all the strategies efficiently control the high-stress transient,
triggering similar high current peaks (approximately 350 A) and huge negative torque spikes
(approximately —35 Nm) to perform the fast reversal. The VDC (Voltage V) subplot (bottom-
right) indicates a similar response profile, with the voltage rising in steps and reaching a peak
close to 50 V throughout the braking phase. A small difference is apparent in the reached DC
voltage after the transient, where the Hybrid Proposed model reaches a little lower (about 35
V) compared to the FSL and MPC models (about 40 V). Overall, the plot confirms that the
proposed cascaded Deep Reinforcement Learning + Fuzzy SARSA(A) framework outperforms
both the standalone fuzzy-reinforcement and model-predictive strategies in terms of
robustness, smoothness, and steady-state precision.
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4.4 Discussion

The findings from the simulations and comparative studies explicitly show the greater
effectiveness of the proposed Cascaded Hybrid Deep Reinforcement Learning and Fuzzy
SARSA(L) Controller compared to the individual FSL and MPC approaches. The model
hybrid combines adaptive learning and fuzzy reasoning and hence offers quicker transient
response, zero overshoot, and smoother voltage and current traces. The ANFIS outputs
(Figures 4 and 5) establish great training convergence, good correlation between target and
actual outputs, and properly constructed nonlinear input—output relationships, supporting the
generalization ability of the model. The plots of system responses (Figure 6 a—c) also indicate
accurate voltage tracking, whereby the actual voltage tracks the noisy reference signal
smoothly with zero steady-state error, demonstrating the hybrid controller's resistance to high-
frequency noise and nonlinearities. The FSL and MPC controllers (Figures 7 and 8) have
satisfactory control actions but are affected by more oscillations, transient spikes, and delayed
settling during sudden speed reversals. However, the Hybrid Proposed controller (Figure 9)
provides the best current, torque, and voltage regulation with well-damped transients and
stable steady-state behavior, even upon sudden load or speed change. The comparative plots
(Figure 10) establish that although all controllers respond well to step and reversal commands,
the hybrid approach provides the most robust and energy-efficient response with smooth
torque transitions and accurate DC-link voltage control. In summary, these results establish
that the cascaded hybrid DRL—Fuzzy SARSA(A) framework offers a more adaptive, resilient,
and more efficient control strategy for BLDC motor drives than traditional MPC or fuzzy-only
controllers.

5. Conclusion

This work proposed a Cascaded Hybrid Deep Reinforcement Learning and Fuzzy SARSA(L)
Controller for smart speed and torque control of BLDC motor drives. The system proposed
integrates well both reinforcement-based global learning and fuzzy rule-based adaptive
control, eliminating the shortcomings of traditional and single-level soft computing methods.
Simulation results validate that the hybrid controller provides smoother torque, quicker
dynamic response, and better load disturbance rejection and nonlinear variations than Fuzzy
SARSA(A)-Only and Model Predictive Control methods. The coupling with hierarchical
learning guarantees maximum decision-making, real-time adaptability, and reliable
performance without explicit motor modeling. In summary, the suggested hybrid framework
sets a solid ground for subsequent intelligent control technologies in next-generation electric
drive, renewable energy, and automation systems.
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