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This article presents a mathematical convergence study of nonlinear magnetohydrodynamic 

(MHD) nanofluid convection through a vertical porous plate by the use of the Homotopy 

Perturbation Method (HPM). A nanofluid model, developed using the Buongiorno technique, 

considers the influence of thermophoresis and Brownian movement. Similarity transformations 

are employed in order to simplify Partial differential equations that influence nonlinearity to 

ordinary differential equations.  Then, it is possible to determine the solutions to the 

temperature, concentration, and velocity profiles analytically employing the Homotopy 

Perturbation Method (HPM).  A thorough examination of the convergence to the first order of 

approximation is conducted to establish the reliability of the truncated series.  Numerical 

evaluation of the norm values and successive-difference values of errors is carried out, and then 

the results are depicted in three-dimensional surface graphs. It has been shown that the HPM 

solution converges rapidly and that the first-order correction is sufficient to ensure stability and 

accuracy.  The results establish a strong foundation on which future studies will be rooted as 

they demonstrate that HPM is a reliable tool when addressing nonlinear coupled MHD 

nanofluid convection problems. 

 

Keywords: Magnetohydrodynamics (MHD), Nanofluid, Free Convection, Vertical Porous 

Plate, Thermal Radiation, Brownian Motion, Thermophoresis, Porous Medium, Homotopy 

Perturbation Method (HPM), Convergence analysis. 

 

1  Introduction 

Nanoparticle colloidal suspensions are nowadays engineered into nanofluids in common base 

fluids, and products of immense utility as heat transmission media.  The enhanced convective 
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transport properties and high thermal conductivity make it useful in cooling technologies, 

energy systems, and materials processing, due to its superior thermal conductivity over fluids 

[1-4].  Since it includes the consideration of both Brownian motion and thermophoretic 

diffusion, which govern the dynamics of nanoparticles and play a significant role in thermal 

transport, the Buongiorno formulation has been embraced among several other highly 

theoretical models [5-9].  When these effects are added to external influences, such as 

magnetic fields, porous media, and radiative heat transport, they are far more pronounced. 

          The connection between magnetohydrodynamics (MHD) and nanofluid convection 

has been critically examined because of its implications in enhanced thermal management 

technologies, crystal growth, geothermal systems, and nuclear reactors [6,7,10].  Radiative 

energy transport additionally changes the temperature field, notably in high-temperature 

processes such as the reactor cooling system, polymer extrusion, and solar collectors [1,3,6].  

Likewise, the additional drag force induced by porous medium could be manipulated to 

modulate the characteristics of heat transfer and velocity [11-13].  The significantly coupled 

nonlinear system formed by the synergistic interaction between radiation, magnetic fields, 

porous resistance, and nanoparticle diffusion warrants a robust analytical or semi-analytical 

method to develop a reliable solution [2,6,7,12]. 

         Over the years, both numerical and analytical techniques have been fashioned to 

understand nanofluid transport models.  Numerical methods such as spectral collocation and 

finite element are accurate, even though they are computationally expensive.  On the contrary, 

semi-analytical methods provide a practical closed-form solution at a lower cost of computing.  

He [14] proposed the Homotopy Perturbation Method (HPM), attracting much attention since 

it is simple usage, ability to converges, and can handle severe nonlinearities.  HPM has 

successfully been applied to MHD nanofluid flows in porous media [15-18], radiative and 

chemically reactive nanofluid convection [19-21], and complex geometries such as sloped or 

stretched surfaces in general [6,12,13,22,23]. 

         Despite these improvements, the convergence properties of HPM solutions to 

nanofluid free convection equations with Brownian motion, thermophoresis, magnetic fields, 

porous media, and the radiation mechanism have not been fully investigated in most literature.  

Past studies rarely focus on convergence verification, but instead only focus on obtaining 

numerical validations or approximate solutions.  Use of truncated series has not yet been 

established to be dependable without that validation, particularly when using nonlinear 

coupled systems. 

           The current work addresses this gap by developing a mathematical simulation of 

free convection of the unsteady MHD nanofluid adjacent to a vertical porous plate through 

considering the thermophoresis, Brownian motion or diffusion, and thermal radiation.  The 

three governing equations are the momentum equation, the energy equation and the 

concentration equation, and it is solved analytically by using HPM.  The utility of this paper 

is the convergence analysis of the truncated series solutions.  Numerical estimates of residual 

norms and successive-difference errors are given along with three-dimensional images of their 

behavior.  The results indicate that convergence is rapid, that the first-order correction is 

sufficient to be stable, and that additional modifications are not possible with higher orders of 

approximation.  In this way, HPM of MHD nanofluid convection is determined both in the 

current research and in its formulation, analytic development, and convergence.  The 
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subsequent article will discuss in more detail the physical quantities such as the skin friction, 

the Sherwood number, and the Nusselt number. 

 

2   Problem Formulation  

Take into account the unsteady flow of free convection of an electrically active, 

incompressible nanofluid besides an infinite (semi-infinite) vertical porous plate that is placed 

when there is a continuous transversally oriented magnetic field. The nanofluid model 

described by Buongiorno also uses the impacts of the Brownian motion and thermophoretic 

diffusion [5-9]. The Rosseland approximation considers that a suspended plate with 

multiscattering is under the influence of a homogeneous porous medium of thermal radiation 

[1, 3, 4]. 

         Let u∗(y∗, t∗)  be the velocity component along the plate, T∗(y∗, t∗)  be the 

temperature, and A∗(y∗, t∗)  be the concentration of nanoparticles. The following are the 

dimensional governing equations:  
∂u∗

∂t∗
= ν

∂2u∗

∂y∗2
−
σB0

2

ρ
u∗ −

ν

K0
u∗ + gβT(T

∗ − T∞
∗ ) + gβa(A

∗ − A∞
∗ ), (1) 

∂T∗

∂t∗
= α

∂2T∗

∂y∗2
−

1

ρcp

∂qr

∂y∗
+ τ(DB

∂C∗

∂y∗
∂T∗

∂y∗
+ DT

(∂T∗/∂y∗)2

T∞
∗ ) +

Q0

ρcp
(T∗ − T∞

∗ ), (2) 

∂A∗

∂t∗
= DB

∂2A∗

∂y∗2
+

DT

T∞
∗

∂2T∗

∂y∗2
.  (3) 

The Rosseland approximation [1,4,6] is 

qr = −
16σ∗T∞

∗3

3k∗
∂T∗

∂y∗
.  (4) 

 

The initial and boundary Conditions are as follows 

t∗ = 0:    u∗(y∗, 0) = 0, T∗(y∗, 0) = T∞
∗ , A∗(y∗, 0) = A∞

∗ , (5) 

y∗ = 0:    u∗(0, t∗) = U0, T
∗(0, t∗) = Tw

∗ , A∗(0, t∗) = Aw
∗ , (6) 

y∗ → ∞:    u∗ → 0, T∗ → T∞
∗ , A∗ → A∞

∗ . (7) 

The dimensionless variables are introduced [6,11,12,15,20] as follows: 

y =
y∗U0
ν

,    u =
u∗

U0
,    θ =

T∗ − T∞
∗

Tw
∗ − T∞

∗ ,    φ =
A∗ − A∞

∗

Aw
∗ − A∞

∗ ,    t =
t∗U0

2

ν
. 

  (8) 

Using (8) and (13), the governing equations (1) to (7) in the form of non-dimensional equations 

(9) to (12) are: 
∂u

∂t
=

∂2u

∂y2
− (M + K)u + Gr θ + Gc φ,  (9) 

∂θ

∂t
=

1+Rd

Pr

∂2θ

∂y2
− Qθ + Nb

∂θ

∂y

∂φ

∂y
+ Nt (

∂θ

∂y
)
2
,  (10) 

∂Ф

∂t
=

1

Sc

∂2Ф

∂y2
+

Nt

Nb

∂2θ

∂y2
.  (11) 

The following are related initial and boundary conditions: 

𝑢(𝑦, 0) = 0,        𝜃(𝑦, 0) = 0,        Ф(𝑦, 0) = 0.
𝑢(0, 𝑡) = 𝑈(𝑡),        𝜃(0, 𝑡) = 1,        Ф(0, 𝑡) = 1.
𝑢(𝑦, 𝑡) → 0,        𝜃(𝑦, 𝑡) → 0,        Ф(𝑦, 𝑡) → 0    𝑎𝑠    𝑦 → ∞.

} (12) 
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The parameters that are dimensionless are: 

𝑀 =
𝜎𝐵0

2𝜈

𝜌𝑈0
2 ,    𝐾 =

𝜈

𝐾0𝑈0
2 ,    𝑅𝑑 =

16𝜎∗𝑇∞
∗3

3𝑘∗𝑘
, 𝑃𝑟 =

𝜈

𝛼
,    𝑆𝑐 =

𝜈

𝐷𝐵
,

𝑁𝑏 =
𝜏𝐷𝐵(𝐴𝑤

∗ −𝐴∞
∗ )

𝜈
,    𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑤
∗−𝑇∞

∗ )

𝜈𝑇∞
∗ ,    𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑤
∗−𝑇∞

∗ )𝜈

𝑈0
3 ,

𝐺𝑐 =
𝑔𝛽𝑎(𝐴𝑤

∗ −𝐴∞
∗ )𝜈

𝑈0
3 ,    𝑄 =

𝑄0𝜈

𝜌𝑐𝑝𝑈0
2 . }

 
 

 
 

     (13) 

The unstable nanofluid flow, mass transfer, and heat are described by the governing equations 

(9)–(11).  However, we limit our focus to the stable regime for this inquiry.  

In (9)–(11), where ∂/∂t=0, the equations decrease to 
𝑑2𝑢

𝑑𝑦2
− (𝑀 + 𝐾) 𝑢 + 𝐺𝑟 𝜃 + 𝐺𝑐  Ф = 0,  (14) 

1+𝑅𝑑

𝑃𝑟
 
𝑑2𝜃

𝑑𝑦2
+𝑁𝑏 

𝑑𝜃

𝑑𝑦

𝑑Ф

𝑑𝑦
+ 𝑁𝑡 (

𝑑𝜃

𝑑𝑦
)
2
− 𝑄 𝜃 = 0,  (15) 

𝑑2Ф

𝑑𝑦2
− 𝑆𝑐 Ф +

𝑁𝑡

𝑁𝑏
 
𝑑2𝜃

𝑑𝑦2
= 0.  (16) 

The associated boundary conditions turn into 

 
𝑢(0) = 1,    𝜃(0) = 1,    Ф(0) = 1,
𝑢(∞) = 0,    𝜃(∞) = 0,    Ф(∞) = 0.

}  (17) 

 

2.1  Similarity Transformation 

An introduction to the dependent functions and similarity variable [5-9, 12, 15-17] is as 

follows  

𝜂 = 𝑦,    𝑓(𝜂) = 𝑢(𝑦, 𝑡),    𝜃(𝜂),    Ф(𝜂),  (18) 

The following ODE system is the result of reducing the controlling PDEs (14) to (16): 

𝑓′′(𝜂) − (𝑀 + 𝐾)𝑓(𝜂) + 𝐺𝑟 𝜃(𝜂) + 𝐺𝑐 Ф(𝜂) = 0, (19) 
1+𝑅𝑑

𝑃𝑟
𝜃′′(𝜂) − 𝑄𝜃(𝜂) + 𝑁𝑏 𝜃′(𝜂)Ф′(𝜂) + 𝑁𝑡(𝜃′(𝜂))

2 = 0, (20) 

Ф′′(𝜂) − 𝑆𝑐 Ф(𝜂) +
𝑁𝑡

𝑁𝑏
𝜃′′(𝜂) = 0.  (21) 

The boundary conditions Eq. (17) becomes 
𝜂 = 0:     𝑓(0) = 1, 𝜃(0) = 1, Ф(0) = 1,
𝜂 → ∞:     𝑓(𝜂) → 0, 𝜃(𝜂) → 0, Ф(𝜂) → 0.

} (22) 

 

3  Homotopy Perturbation Method (HPM) 

The Homotopy Perturbation Method (HPM) was initially presented by Ji-Huan He [14], a 

powerful semi-analytic technique of solving linear and nonlinear differential equations arising 

in science and engineering.  Building a homotopy is the fundamental concept of HPM that 

turns a nonlinear problem that is difficult to solve into a simple one, and introduces parameter 

𝑝 ∈ [0,1] for embedding.  Extending the solution as a power series of p can give solutions 

that are approximate and are commonly fast in reaching the actual solution. 

HPM doesn't need the existence of a naturally tiny parameter in the governing 

equations, as is the case with conventional perturbation methods.  This is particularly 

attractive in fluid flow and heat transfer issues, where minor parameters are at times not 

known.  The embedding parameter 𝑝 , can be interpreted as an artificial parameter of 
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perturbation; the nonlinear system can then be interpreted by p=1, and the problem is recast 

into a solvable linear system when p=0. 

       The first step in the general HPM formulation is to rewrite a differential equation that 

is nonlinear in the following form: 

 𝐺(𝑤) − 𝑔(𝑠) = 0,    𝑠 ∈ 𝛺, (23) 

with boundary conditions  

 𝐻 (𝑤,
𝜕𝑤

𝜕𝑛
) = 0,    𝑠 ∈ 𝛤, (24) 

H being a boundary operator, G is a general operator, and g(s) is some known analytic function.   

By breaking down the operator G into a linear (𝐿) and a nonlinear (𝑁) parts,  

 

 𝐺(𝑤) = 𝐿(𝑤) + 𝑁(𝑤). (25) 

Next, the homotopy is built as 

 𝐵(𝑦, 𝑝) = (1 − 𝑝) [𝐿(𝑦) − 𝐿(𝑤0)] + 𝑝 [𝐿(𝑦) + 𝑁(𝑦) − 𝑔(𝑠)] = 0, (26) 

The initial approximation 𝑤0 meets the boundary criteria.  The solution 𝑦 is expressed in a 

perturbation series in 𝑝:  

 𝑦 = 𝑦0 + 𝑝𝑦1 + 𝑝
2𝑦2 +⋯, (27) 

And when 𝑝 = 1, we find the approximation to the solution as follows: 

 𝑦 = 𝑦0 + 𝑦1 + 𝑦2 +⋯. (28) 

The temperature, concentration, and velocity fields of the free convection flow in nanofluids 

are obtained, as approximate closed-form solutions, using HPM in the present work. 

 

4  HPM Solution 

Take a look at the embedding expansions. 

𝑓(𝜂) = 𝑓0(𝜂) + 𝑝𝑓1(𝜂) + 𝑝
2𝑓2(𝜂) + ⋯, (29) 

𝜃(𝜂) = 𝜃0(𝜂) + 𝑝𝜃1(𝜂) + 𝑝
2𝜃2(𝜂) +⋯, (30) 

Ф(𝜂) = Ф(𝜂) + 𝑝Ф1(𝜂) + 𝑝
2Ф2(𝜂) +⋯. (31) 

With 𝑝 → 1 at the end. Applying Eqs. (25) and (26) in Eqs. (19) to (21) we get 

𝑝0:  

𝑓0′′ − (𝑀 + 𝐾)𝑓0 = 0,    𝑓0(0) = 1, 𝑓0(∞) = 0,  (32) 
1+𝑅𝑑

𝑃𝑟
 𝜃0′′ − 𝑄 𝜃0 = 0,    𝜃0(0) = 1, 𝜃0(∞) = 0,  (33) 

Ф0′′ − 𝑆𝑐 Ф0 = 0,    Ф0(0) = 1, Ф0(∞) = 0,  (34) 

Solving the Eqs. (32) to (34) and applying the initial and boundary conditions, we obtain the 

zeroth-order solutions as follows 

𝑓0(𝜂) = 𝑒
−√𝑀+𝐾 𝜂 ,     𝜃0(𝜂) = 𝑒

−√
𝑄𝑃𝑟

1+𝑅𝑑
 𝜂
,  Ф0(𝜂) = 𝑒

−√𝑆𝑐 𝜂 .                (35) 

𝐩𝟏:  

𝐟𝟏′′ − (𝐌 + 𝐊)𝐟𝟏 +𝐆𝐫 𝛉𝟎(𝛈) + 𝐆𝐜 Ф𝟎(𝛈) = 𝟎,    𝐟𝟏(𝟎) = 𝟎, 𝐟𝟏(∞) = 𝟎, (36) 

 
1+𝑅𝑑

𝑃𝑟
 𝜃1′′ − 𝑄 𝜃1 +𝑁𝑏 𝜃0′(𝜂)Ф0′(𝜂) + 𝑁𝑡  (𝜃0′(𝜂))

2 = 0,     𝜃1(0) = 0, 𝜃1(∞) = 0, (37) 

Ф1′′ − 𝑆𝑐 Ф1 +
𝑁𝑡

𝑁𝑏
 𝜃0′′(𝜂) = 0,    Ф1(0) = 0, Ф1(∞) = 0, (38) 

Solving the Eqs. (36) to (38) and applying the initial and boundary conditions, we obtain the 

first-order solutions as follows 



1000   Analysis Of Convergence In …  Mohanambal. B et. al. 

 

Nanotechnology Perceptions 20 No. 4 (2024) 995-1007 

 

 

 

𝑓1(𝜂) = (
𝐺𝑟

𝑄 𝑃𝑟

1+𝑅𝑑
−(𝑀+𝐾)

+
𝐺𝑐

𝑆𝑐−(𝑀+𝐾)
) 𝑒𝑥𝑝(−√ 𝑀 + 𝐾  𝜂)

        −
𝐺𝑟

𝑄 𝑃𝑟

1+𝑅𝑑
−(𝑀+𝐾)

  𝑒𝑥𝑝(−√
𝑄 𝑃𝑟

1+𝑅𝑑
  𝜂)

        −
𝐺𝑐

𝑆𝑐−(𝑀+𝐾)
  𝑒𝑥𝑝(−√𝑆𝑐  𝜂).

 (39) 

𝜃1(𝜂) = (
𝑁𝑏 𝑃𝑟 √

𝑄𝑃𝑟

1+𝑅𝑑

(1+𝑅𝑑)(2√
𝑄𝑃𝑟

1+𝑅𝑑
+√𝑆𝑐)

+
𝑁𝑡 𝑃𝑟

3(1+𝑅𝑑)
)  𝑒𝑥𝑝 (−√

𝑄𝑃𝑟

1+𝑅𝑑
  𝜂)

    −
𝑁𝑏 𝑃𝑟 √

𝑄𝑃𝑟

1+𝑅𝑑

(1+𝑅𝑑)(2√
𝑄𝑃𝑟

1+𝑅𝑑
+√𝑆𝑐)

 𝑒𝑥𝑝 (−(√
𝑄𝑃𝑟

1+𝑅𝑑
+ √𝑆𝑐)𝜂)

    −
𝑁𝑡 𝑃𝑟

3(1+𝑅𝑑)
 𝑒𝑥𝑝 (−2√

𝑄𝑃𝑟

1+𝑅𝑑
  𝜂) .

  

 (40)  

Ф1(𝜂) = −
𝑁𝑡

𝑁𝑏
  

𝑄𝑃𝑟

1+𝑅𝑑
𝑄𝑃𝑟

1+𝑅𝑑
−𝑆𝑐

[𝑒𝑥𝑝(−√
𝑄𝑃𝑟

1+𝑅𝑑
  𝜂) − 𝑒𝑥𝑝(−√𝑆𝑐  𝜂)] (41) 

Finally, we obtain the composite first-order approximation solutions of the temperature, 

concentration, and velocity fields by setting 𝑝 = 1  in the equations (29)-(31) as follows 

𝑓(𝜂) ≈ 𝑓0(𝜂) + 𝑓1(𝜂),       𝜃(𝜂) ≈ 𝜃0(𝜂) + 𝜃1(𝜂),  Ф(𝜂) ≈ Ф0(𝜂) + Ф1(𝜂) (42) 

   These formulas are the general form of the HPM series expansion, which takes into account 

the leading-order and first-order HPM corrections. The temperature, concentration, and 

velocity closed-form solutions are acquired by replacing the components in the derivation of 

the zeroth (Eq. (35), first order (Eq. (39)-(41)) solutions in Eq. (42).  We have condensed 

these lengthy phrases here in the interests of brevity.  They have been used in the convergence 

analysis illustrated in Section 5.   

 

5  Results and Discussion: Convergence Analysis 

Convergence of successive approximations up to the first order was investigated to verify the 

reliability of the Homotopy Perturbation Method (HPM) solution [24].  The composite 

solutions were defined as follows. 

 𝑓(𝑛)(𝜂) = ∑𝑛𝑘=0 𝑓𝑘(𝜂),    𝜃
(𝑛)(𝜂) = ∑𝑛𝑘=0 𝜃𝑘(𝜂),    Ф

(𝑛)(𝜂) = ∑𝑛𝑘=0 Ф𝑘(𝜂), 
with 𝑛 = 0,1. 

 

5.1  Convergence metrics: 

There were two criteria used: 

The most significant absolute departure when the governing equations are substituted by the 

truncated series solution is the residual error: 
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 ∥ ℛ(𝑛) ∥∞= 𝑚𝑎𝑥
0≤𝜂≤𝜂𝑚𝑎𝑥

|ℒ[𝑢(𝑛)] −𝒩[𝑢(𝑛)]|, 

ℒ and 𝒩 represent linear and nonlinear operators, respectively. 

The maximum difference between successive orders is called the successive-difference error. 

 ∥ 𝐸(𝑛) ∥∞= 𝑚𝑎𝑥
0≤𝜂≤𝜂𝑚𝑎𝑥

|𝑢(𝑛) − 𝑢(𝑛−1)|. 

Such diagnostics are often applied to measure accuracy in HPM and perturbation methods 

[25]. 

 

5.2  Findings of Numerical Convergence: 

The results of calculating the representative parameter set (𝑀 = 1, 𝐾 = 1, 𝑃𝑟 = 0.71, 𝑄 =
0.5, 𝑅𝑑 = 0.5, 𝐺𝑟 = 2, 𝐺𝑐 = 2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1, 𝑆𝑐 = 0.6) on the domain 𝜂 ∈ [0,8] 
are displayed in Table 1. 

Order 𝑛 ∥ ℛ𝑓
(𝑛)

∥∞ ∥ ℛ𝜃
(𝑛)

∥∞ ∥ ℛФ
(𝑛)

∥∞ ∥ 𝐸𝑓
(𝑛)

∥∞ ∥ 𝐸𝜃
(𝑛)

∥∞ ∥ 𝐸Ф
(𝑛)

∥∞ 

 

0 

 

3.9599 

 

0.18990 

 

0.23484 

 

– 

 

– 

 

– 

 

1 

 

1.0144 

 

0.23206 

 

0.31577 

 

0.73342 

 

0.008373 

 

0.11047 

 

     

Table  1: Residual norms and successive-difference errors for HPM solutions up to first order. 

 

5.3  Convergence Plots in 3D: 

Surface plots of residual and successive-difference errors were plotted in 3D to make the 

numerical results more supplementary.  All the graph figures were developed in MATLAB.    

The following charts represent the variation in errors with the approximation order n and the 

similarity variable 𝜂. 
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Fig. 1(a). 3D residual plot of 𝑓(𝜂) versus η for M = 1, K = 1, P r = 0.71, Q = 0.5, Rd = 0.5, 

Gr = 2, Gc = 2, Nb = 0.1, Nt = 0.1, Sc = 0.6. 

 

Fig. 1(b). 3D residual plot of 𝜃(𝜂) versus η for M = 1, K = 1, P r = 0.71, Q = 0.5, Rd = 0.5, 

Gr = 2, Gc = 2, Nb = 0.1, Nt = 0.1, Sc = 0.6. 

 

Fig. 1(c). 3D residual plot of Ф(𝜂) versus η for M = 1, K = 1, P r = 0.71, Q = 0.5, Rd = 0.5, 

Gr = 2, Gc = 2, Nb = 0.1, Nt = 0.1, Sc = 0.6. 

 

According to Fig. 1(a)-1(c), the largest residual magnitude is at zeroth order, which contains 

only the homogeneous solution.  The residual at the first order is drastically decreasing, 

especially in the concentration profile, as the error decreases from 0.3606 to 0.1544.  

Residuals of temperature and velocity profiles decrease as compared to zero order, but they 

remain near unity.  The residuals are not significantly modified by higher-order corrections 
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beyond the first order, and this means that the HPM solution is stabilized by the first-order 

correction.  This is in line with the theoretical forecast that exponential-type solutions will 

immediately converge [26,27]. 

 

Fig. 2(a). 3D error plot of 𝑓(𝜂) versus η for M = 1, K = 1, P r = 0.71, Q = 0.5, Rd = 0.5, 

Gr = 2, Gc = 2, Nb = 0.1, Nt = 0.1, Sc = 0.6. 

 

Fig. 2(b). 3D error plot of 𝜃(𝜂) versus η for M = 1, K = 1, P r = 0.71, Q = 0.5, Rd = 0.5, 

Gr = 2, Gc = 2, Nb = 0.1, Nt = 0.1, Sc = 0.6. 
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Fig. 2(c). 3D error plot of Ф(𝜂) versus η for M = 1, K = 1, P r = 0.71, Q = 0.5, Rd = 0.5, 

Gr = 2, Gc = 2, Nb = 0.1, Nt = 0.1, Sc = 0.6. 

As shown in Fig. 2(a) - 2(c), the sequence-difference error provides objective evidence on 

convergence.  The greatest corrections occur between zeroth and first order, especially in the 

velocity profile (𝐸𝑓
(1)
= 0.7334 ) and the concentration profile (𝐸Ф

(1)
= 0.1105 ).   The 

modification is significantly less with the temperature profile (𝐸𝜃
(1)
= 0.00837),  indicating 

a quicker convergence of the thermal field.  The negligible contribution of higher-order 

corrections of all three fields proves the convergence of the solution at the first order.  Prior 

studies of nonlinear nanofluid flows solved using HPM agree with this convergence property 

[28,29]. 

 

5.4  The Interpretation of Convergence Behavior in the Physical Form is as follows: 

Rapid convergence: In the chosen parameter set, the HPM solution will converge within the 

HPM solution itself, without any additional variation due to the second-order terms.  This is 

an indication of the effectiveness of the technique on nonlinear coupled nanofluid systems.  

Field-dependent convergence: The temperature field converges the fastest when the 

magnitude of the residuals and errors is much smaller than that of velocity and concentration.  

This is attributed to the fact that the exponential decay of the thermal solution is more dominant 

compared to the much stronger coupling between the momentum and concentration fields.           

HPM Reliability: The truncated series offers a very dependable analytical approximation, as 

confirmed by the insignificant successive-difference errors beyond the first order. These 

results support the use of HPM in nanofluid convection situations where it would be 

challenging to find precise solutions otherwise.  

         According to published characteristics of HPM solutions in nonlinear heat and mass 

transport problems [30-32], where exponential modes provide restricted higher-order 

corrections and convergence is attained with a limited number of terms, the observed 

convergence patterns are consistent with the literature. 

 

6  Conclusion 

The present paper has investigated the homotopy perturbation method (HPM) to analyze the 

flow of free convection of electrically conducting incompressible nanofluid beyond a vertical, 

semi-infinite porous plate.  Governing equations of the nanofluid model by Buongiorno were 
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reduced to similarity equations, which were in turn solved analytically using the first two terms 

of the HPM expansion.  The successive-difference errors and the residual norms were 

carefully studied to demonstrate that the first-order correction is sufficient to ensure the 

accuracy and stability.  Three-dimensional surface plots were utilized to show the numerical 

evaluation of successive-difference errors and residual norms.  The results indicate that HPM 

is a reliable semi-analytical tool in addressing nonlinear MHD nanofluid convection problems. 
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