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This article presents a mathematical convergence study of nonlinear magnetohydrodynamic
(MHD) nanofluid convection through a vertical porous plate by the use of the Homotopy
Perturbation Method (HPM). A nanofluid model, developed using the Buongiorno technique,
considers the influence of thermophoresis and Brownian movement. Similarity transformations
are employed in order to simplify Partial differential equations that influence nonlinearity to
ordinary differential equations. Then, it is possible to determine the solutions to the
temperature, concentration, and velocity profiles analytically employing the Homotopy
Perturbation Method (HPM). A thorough examination of the convergence to the first order of
approximation is conducted to establish the reliability of the truncated series. Numerical
evaluation of the norm values and successive-difference values of errors is carried out, and then
the results are depicted in three-dimensional surface graphs. It has been shown that the HPM
solution converges rapidly and that the first-order correction is sufficient to ensure stability and
accuracy. The results establish a strong foundation on which future studies will be rooted as
they demonstrate that HPM is a reliable tool when addressing nonlinear coupled MHD
nanofluid convection problems.
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1 Introduction

Nanoparticle colloidal suspensions are nowadays engineered into nanofluids in common base
fluids, and products of immense utility as heat transmission media. The enhanced convective
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transport properties and high thermal conductivity make it useful in cooling technologies,
energy systems, and materials processing, due to its superior thermal conductivity over fluids
[1-4]. Since it includes the consideration of both Brownian motion and thermophoretic
diffusion, which govern the dynamics of nanoparticles and play a significant role in thermal
transport, the Buongiorno formulation has been embraced among several other highly
theoretical models [5-9]. When these effects are added to external influences, such as
magnetic fields, porous media, and radiative heat transport, they are far more pronounced.

The connection between magnetohydrodynamics (MHD) and nanofluid convection
has been critically examined because of its implications in enhanced thermal management
technologies, crystal growth, geothermal systems, and nuclear reactors [6,7,10]. Radiative
energy transport additionally changes the temperature field, notably in high-temperature
processes such as the reactor cooling system, polymer extrusion, and solar collectors [1,3,6].
Likewise, the additional drag force induced by porous medium could be manipulated to
modulate the characteristics of heat transfer and velocity [11-13]. The significantly coupled
nonlinear system formed by the synergistic interaction between radiation, magnetic fields,
porous resistance, and nanoparticle diffusion warrants a robust analytical or semi-analytical
method to develop a reliable solution [2,6,7,12].

Over the years, both numerical and analytical techniques have been fashioned to
understand nanofluid transport models. Numerical methods such as spectral collocation and
finite element are accurate, even though they are computationally expensive. On the contrary,
semi-analytical methods provide a practical closed-form solution at a lower cost of computing.
He [14] proposed the Homotopy Perturbation Method (HPM), attracting much attention since
it is simple usage, ability to converges, and can handle severe nonlinearitiecs. HPM has
successfully been applied to MHD nanofluid flows in porous media [15-18], radiative and
chemically reactive nanofluid convection [19-21], and complex geometries such as sloped or
stretched surfaces in general [6,12,13,22,23].

Despite these improvements, the convergence properties of HPM solutions to
nanofluid free convection equations with Brownian motion, thermophoresis, magnetic fields,
porous media, and the radiation mechanism have not been fully investigated in most literature.
Past studies rarely focus on convergence verification, but instead only focus on obtaining
numerical validations or approximate solutions. Use of truncated series has not yet been
established to be dependable without that validation, particularly when using nonlinear
coupled systems.

The current work addresses this gap by developing a mathematical simulation of
free convection of the unsteady MHD nanofluid adjacent to a vertical porous plate through
considering the thermophoresis, Brownian motion or diffusion, and thermal radiation. The
three governing equations are the momentum equation, the energy equation and the
concentration equation, and it is solved analytically by using HPM. The utility of this paper
is the convergence analysis of the truncated series solutions. Numerical estimates of residual
norms and successive-difference errors are given along with three-dimensional images of their
behavior. The results indicate that convergence is rapid, that the first-order correction is
sufficient to be stable, and that additional modifications are not possible with higher orders of
approximation. In this way, HPM of MHD nanofluid convection is determined both in the
current research and in its formulation, analytic development, and convergence. The
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subsequent article will discuss in more detail the physical quantities such as the skin friction,
the Sherwood number, and the Nusselt number.

2 Problem Formulation
Take into account the unsteady flow of free convection of an electrically active,
incompressible nanofluid besides an infinite (semi-infinite) vertical porous plate that is placed
when there is a continuous transversally oriented magnetic field. The nanofluid model
described by Buongiorno also uses the impacts of the Brownian motion and thermophoretic
diffusion [5-9]. The Rosseland approximation considers that a suspended plate with
multiscattering is under the influence of a homogeneous porous medium of thermal radiation
[1,3,4].

Let u*(y*,t*) be the velocity component along the plate, T*(y*,t*) be the
temperature, and A*(y*,t*) be the concentration of nanoparticles. The following are the
dimensional governing equations:

a * 62 * BZ * * * * * *
S = Vayr — U o  gBr(TT = i) + gBa (AT — AL), (1)
aT* _  9°T* 1 aqr ac* aT* (8T*/8y*)? T* — T*
ot* =a ay*z PCp ay (DB 6 ay D T* ) + pc p( TOO)I (2)
aA* 9%A*  Dr 9°T*
ov ~ “Bayz Ty oy ®
The Rosseland approximation [1,4,6] is

160" T53 aT* 4
qr - 3k* ay* ( )
The initial and boundary Conditions are as follows
t"=0: u'(y,0) =0, T*(y",0) =Ty, A*'(y",0) = A%, (5)
y*=0: u*(0,t") = U, T*(0,t") =Ty, A*(0,t") = A}, (6)
y* = o0 ut-=0, T" > Ty, A" - AL. @)
The dimensionless variables are introduced [6,11,12,15,20] as follows:

y*Uq u* T — Te A" — A%, t*u3
= ) u = _J e = —*P (‘P = —*P t = .
v U, T — To Ar, — A%, v
8)

Using (8) and (13), the governing equations (1) to (7) in the form of non-dimensional equations
(9) to (12) are:
3—1:=——(M+K)u+Gr9+GC(p, (9)
80 _ 1+Rd9%0 20 0 20
o= oy QO NG N (ay)’ (10)
00 _ 19%0 N 9%
9t Scdy? ' Npoy? (11)

The following are related initial and boundary conditions:

u(y,0) =0, 6(y,0) =0, ®(y,0) =0.
u(0,)=U0(), 0600,t)=1  &(0,t)=1. (12)
u(y,t) =0, 6y, t) =0, Oy, t) >0 as y - oo
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The parameters that are dimensionless are:

oBZv v 160* TS v v
M=—, K=—, R;= 2, Pr=—, Sc=—,
pUg KoUj 3k*k a Dp
_ TDp(AWw—4A%) D7 (Tw—Te) _ 9Br(Tw—Teo)v
Nb - ) Nt * ) Gr = 3 ) (13)
v VT Ug

_ 9Ba(A—Ac)V _ Qv
Gec = Ug , Q = pCp—Ug .
The unstable nanofluid flow, mass transfer, and heat are described by the governing equations
(9)—(11). However, we limit our focus to the stable regime for this inquiry.
In (9)—(11), where 0/0t=0, the equations decrease to

= (MAK) u+Gro+G,0=0, (14)
1+Rdd9 o do _

T TS ND N (y) —060=0, (15)
d2 NtdB_

The associated boundary conditions turn into

u(0)=1, 6(0)=1, P(0)=1, } 1
u(20) = 0, 6(cw) =0, d(co) =0, (a7
2.1 Similarity Transformation
An introduction to the dependent functions and similarity variable [5-9, 12, 15-17] is as
follows

n=y, fm=u®?t), 6(m), @), (18)
The following ODE system is the result of reducing the controlling PDEs (14) to (16):

{:,SZ) —M+K)f(m)+Grom) +Ge dm) =0, (19)

——0"() — Qo) + Ny 0" P'() + N, (6'(m))* =0, (20)
" (1) ~ Sc D) + 26" (m) = 0. 1)

The boundary conditions Eq. (17) becomes
n=0: f(0)=1, 6(0)=1, CD(O)=1,}
n-ooo: f) -0 60 0, @) 0.

3 Homotopy Perturbation Method (HPM)

The Homotopy Perturbation Method (HPM) was initially presented by Ji-Huan He [14], a
powerful semi-analytic technique of solving linear and nonlinear differential equations arising
in science and engineering. Building a homotopy is the fundamental concept of HPM that
turns a nonlinear problem that is difficult to solve into a simple one, and introduces parameter
p € [0,1] for embedding. Extending the solution as a power series of p can give solutions
that are approximate and are commonly fast in reaching the actual solution.

HPM doesn't need the existence of a naturally tiny parameter in the governing
equations, as is the case with conventional perturbation methods. This is particularly
attractive in fluid flow and heat transfer issues, where minor parameters are at times not
known. The embedding parameter p, can be interpreted as an artificial parameter of

(22)
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perturbation; the nonlinear system can then be interpreted by p=1, and the problem is recast
into a solvable linear system when p=0.

The first step in the general HPM formulation is to rewrite a differential equation that
is nonlinear in the following form:

Gw)—g(s) =0, sen, (23)
with boundary conditions
H(w2Y)=0, ser, (24)

H being a boundary operator, G is a general operator, and g(s) is some known analytic function.
By breaking down the operator G into a linear (L) and a nonlinear (N) parts,

G(w) =L(w) + Nw). (25)
Next, the homotopy is built as
B(y,p) = (A =p) [L(Y) = Lwo)] + P [L(Y) + N(¥) — g(s)] = 0, (26)
The initial approximation w, meets the boundary criteria. The solution y is expressed in a
perturbation series in p:

Y=yo+pyi +p*y2+ (27)
And when p =1, we find the approximation to the solution as follows:
Y=Yot+yityz+- (28)

The temperature, concentration, and velocity fields of the free convection flow in nanofluids
are obtained, as approximate closed-form solutions, using HPM in the present work.

4 HPM Solution
Take a look at the embedding expansions.

f) = fo) +pfr(m) +p*f200) + -, (29)

0(n) = 6o(n) + pb1(n) +p*6,(n) + -+, (30)

() = @) +pP1(m) +p?P2(n) + - (31)

With p = 1 at the end. Applying Eqgs. (25) and (26) in Egs. (19) to (21) we get

p:

];0;;; M+ K)fo=0, fo(0)=1, fo(0) =0, (32)
T 00" —Q 0, =0, 6,(0) =1, () =0, (33)

D, —Sc Dy =0, Dy(0) =1, dy(c0) =0, (34)

Solving the Egs. (32) to (34) and applying the initial and boundary conditions, we obtain the
zeroth-order solutions as follows

_ | QP

fol) = e g () = e V1R @y () = eV, (35)

1
p .
f1” - (M+K)f; +Groo(m) + Gcdg(m) =0, £f1(0) =0, f;(0) =0, (36)
1+Rd " I 1 l

;r 0:" —Q 6, + Ny 0y (MPy' (M) + N; (B’ (m)*> =0, 6,(0)=0, 8,(0) =0, (37)
By = Sc Dy +3 05" () =0, ®1(0) =0, Py() =0, (38)

Solving the Egs. (36) to (38) and applying the initial and boundary conditions, we obtain the
first-order solutions as follows
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G
Al = (e T ) P(VM R 1)
Gr
39
R (M+K) (- 1+Rd 2 >
Ge rcn
~ Sy SXP(VSem).
Nb Pr |2ET
0 _ 1+Ry N Nt Pr ex (_ QPr )
1(m) (1+Rd)(2\/f+\/_) 3(1+Rq) p w’1+Rd n
Nb pr |21

1+Rd
— exp ( ( ~ 4+ Sc )77)
(1+Rg)(2 /%h@) 1+R

_ _Ntpr (_2 QPr )
3(1+Ry) exp 1+Rg nj-

(40)
QPr
P
Oy (n) = — 17 QE—RdSC[exp(— oy n)—exp(—\@ 77)] (41)
1+Ry

Finally, we obtain the composite first-order approximation solutions of the temperature,
concentration, and velocity fields by setting p = 1 in the equations (29)-(31) as follows
f@) = fom+ f1m),  6() = O(m) +6:(n), ®(n) = Po(n) + P1(n) (42)

These formulas are the general form of the HPM series expansion, which takes into account
the leading-order and first-order HPM corrections. The temperature, concentration, and
velocity closed-form solutions are acquired by replacing the components in the derivation of
the zeroth (Eq. (35), first order (Eq. (39)-(41)) solutions in Eq. (42). We have condensed
these lengthy phrases here in the interests of brevity. They have been used in the convergence
analysis illustrated in Section 5.

5 Results and Discussion: Convergence Analysis
Convergence of successive approximations up to the first order was investigated to verify the
reliability of the Homotopy Perturbation Method (HPM) solution [24]. The composite
solutions were defined as follows.

FMM) = Tkeo film), 00() = Xiop 6k(m), ™) = Xizo Pr(),
with n = 0,1.

5.1 Convergence metrics:

There were two criteria used:

The most significant absolute departure when the governing equations are substituted by the
truncated series solution is the residual error:
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I R™ o= max [L[u™]—=N[u®™]|,
0sN<Nmax

&% and IV represent linear and nonlinear operators, respectively.
The maximum difference between successive orders is called the successive-difference error.
I EM lo= max Iu(") - u("‘1)|.

SN<Nmax

Such diagnostics are often applied to measure accuracy in HPM and perturbation methods
[25].

5.2 Findings of Numerical Convergence:

The results of calculating the representative parameter set (M =1, K =1, Pr=0.71, Q =
0.5, R4 =05, Gr=2, G, =2, Nb=0.1, Nt = 0.1, Sc = 0.6) on the domain 71 € [0,8]
are displayed in Table 1.

Order 1| R lloy | 11 R Hloo | 11 RG” oo | WES™ lloo | WEF lloo | 11 EG” lloo
0 3.9599 0.18990 0.23484 - — -
1 1.0144 0.23206 0.31577 0.73342 0.008373 0.11047

Table 1: Residual norms and successive-difference errors for HPM solutions up to first order.

5.3 Convergence Plots in 3D:

Surface plots of residual and successive-difference errors were plotted in 3D to make the
numerical results more supplementary. All the graph figures were developed in MATLAB.
The following charts represent the variation in errors with the approximation order n and the
similarity variable 7.

|Residualy

1

n 100 Order n of f
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Fig. 1(a). 3D residual plot of f(n) versusnforM=1,K=1,Pr=0.71,Q=0.5,Rd=0.5,
Gr=2,G¢c=2,Nb=0.1, Nt=0.1, Sc = 0.6.
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Fig. 1(b). 3D residual plot of 8(n) versusm forM=1,K=1,Pr=0.71,Q=0.5,Rd=0.5,
Gr=2,G¢c=2,Nb=0.1, Nt=0.1, Sc = 0.6.
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Fig. 1(c). 3D residual plot of ®(n) versusnforM=1,K=1,Pr=0.71,Q=0.5,Rd=0.5,
Gr=2,Gc=2,Nb=0.1, Nt=0.1, Sc = 0.6.

According to Fig. 1(a)-1(c), the largest residual magnitude is at zeroth order, which contains
only the homogeneous solution. The residual at the first order is drastically decreasing,
especially in the concentration profile, as the error decreases from 0.3606 to 0.1544.
Residuals of temperature and velocity profiles decrease as compared to zero order, but they
remain near unity. The residuals are not significantly modified by higher-order corrections
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beyond the first order, and this means that the HPM solution is stabilized by the first-order
correction. This is in line with the theoretical forecast that exponential-type solutions will
immediately converge [26,27].
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Fig. 2(a). 3D error plot of f(n) versusnforM=1,K=1,Pr=0.71,Q=0.5,Rd=0.5,
Gr=2,G¢c=2,Nb=0.1, Nt=0.1, Sc = 0.6.
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Fig. 2(b). 3D error plot of 8(n) versusm forM=1,K=1,Pr=0.71,Q=0.5,Rd=0.5,
Gr=2,Gc=2,Nb=0.1,Nt=0.1, Sc=0.6.
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Fig. 2(c). 3D error plot of ®(n) versusnforM=1,K=1,Pr=0.71,Q=0.5,Rd=0.5,

Gr=2,Gc=2,Nb=0.1,Nt=0.1, Sc=0.6.
As shown in Fig. 2(a) - 2(c), the sequence-difference error provides objective evidence on
convergence. The greatest corrections occur between zeroth and first order, especially in the

velocity profile (Ef(l) = 0.7334) and the concentration profile (Eél) = 0.1105). The

modification is significantly less with the temperature profile (Ee(,l) = 0.00837), indicating
a quicker convergence of the thermal field. The negligible contribution of higher-order
corrections of all three fields proves the convergence of the solution at the first order. Prior
studies of nonlinear nanofluid flows solved using HPM agree with this convergence property
[28,29].

5.4 The Interpretation of Convergence Behavior in the Physical Form is as follows:
Rapid convergence: In the chosen parameter set, the HPM solution will converge within the
HPM solution itself, without any additional variation due to the second-order terms. This is
an indication of the effectiveness of the technique on nonlinear coupled nanofluid systems.
Field-dependent convergence: The temperature field converges the fastest when the
magnitude of the residuals and errors is much smaller than that of velocity and concentration.
This is attributed to the fact that the exponential decay of the thermal solution is more dominant
compared to the much stronger coupling between the momentum and concentration fields.
HPM Reliability: The truncated series offers a very dependable analytical approximation, as
confirmed by the insignificant successive-difference errors beyond the first order. These
results support the use of HPM in nanofluid convection situations where it would be
challenging to find precise solutions otherwise.

According to published characteristics of HPM solutions in nonlinear heat and mass
transport problems [30-32], where exponential modes provide restricted higher-order
corrections and convergence is attained with a limited number of terms, the observed
convergence patterns are consistent with the literature.

6 Conclusion

The present paper has investigated the homotopy perturbation method (HPM) to analyze the
flow of free convection of electrically conducting incompressible nanofluid beyond a vertical,
semi-infinite porous plate. Governing equations of the nanofluid model by Buongiorno were
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reduced to similarity equations, which were in turn solved analytically using the first two terms
of the HPM expansion. The successive-difference errors and the residual norms were
carefully studied to demonstrate that the first-order correction is sufficient to ensure the
accuracy and stability. Three-dimensional surface plots were utilized to show the numerical
evaluation of successive-difference errors and residual norms. The results indicate that HPM
is areliable semi-analytical tool in addressing nonlinear MHD nanofluid convection problems.
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