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The implementation of Machine Learning (ML) methods, with an emphasis on yarn failure 

indicators, to anticipate the first failure intensity in three-dimensional woven composites. The 

study addresses failure analysis in 3D woven composites, integrating machine learning techniques 

and yarn failure metrics. Traditional failure criteria exhibit limitations in predicting failure under 

multiaxial loads. The main objective is to use Support Vector Machines (SVM) to construct a 

exact forecasting model for the initial failure intensity in 3D woven composites while taking 

Multiscale analysis and yarn failure indicators into account. It makes use of several failure 

criteria, such as the Hashin and Tsai-Wu criteria.  The study uses an all-encompassing 

methodology that combines microscale and mesoscale analysis. SVM is used to predict failures, 

while the Mechanics of Structure Genome (MSG) model is used to boost computational 

efficiency. The SVM model outperforms conventional mesoscale models in forecasting failure 

intensity, as evidenced by the results. Better predictions are provided by the recommended model, 

which also works faster in terms of computing time. With the use of SVM-based models, the 

limits of traditional criteria are overcome in this study, which highlights the potential of these 

models to improve the precision of failure criteria for Multiscale analysis and experimental data in 

3D woven composites.  
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Mechanics of Structure Genome (MSG) model, Initial failure intensity.  

 

1. Introduction 

The unique class of materials known as composites is created by macroscopically integrating 

two or more components, with the benefit of customization for particular uses (Tang et al 

2022). Conventional laminates can have limited inter-laminar strength, but in an effort to 

increase dominance resistance by stitching techniques, interlaminar performance is 

frequently reduced (Liu et al 2023). Several three-dimensional (3D) fabrics have surfaced 

offering advantages such as increased impact resistance, structural stability, and fracture 

toughness. Weft, and binder threads, is unique among 3D woven composites (Zhou et al 

2020). Binder yarns weave the warp and weft together, with the warp yarn oriented in the 

knitting direction and the weft yarn spanning the transverse direction (Chen et al 2021). 

Though 3D woven composites have many amazing qualities, their intricate production 

methods bring inherent uncertainties at different phases, which result in stochastic behaviour 

in their macro-mechanical characteristics. These uncertainties can arise at the constituent 

(micro-scale), ply (mesoscale), or component (macro-scale) levels and can be caused by 

material choices, production techniques, and service duration (Sun et al 2021). In general, 

uncertainties propagate from lower-scale materials, which store more uncertainty than 

higher-scale ones. The investigators are beginning to evaluate composite performance from a 

probabilistic standpoint because of the realization that 3D woven composites are inherently 

variable. As previously stated, there are two main categories of uncertainty in the 

manufacturing process of composites: lavatory and epistemic. Efforts to expand knowledge 

lessen epistemic uncertainty, which arises from ignorance of system and environmental 

factors (Dahale et al 2023). However insecurity characterizes the irreducible variability of 

system variables, especially those related to composite materials, which include production 

variances, properties of the fiber and matrix, and more. Research endeavors that tackle 

uncertainties often concentrate on component attributes and manufacturing procedures by 

using micro-mechanical models and representative elements (Tarfaoui et al 2019). 

Comparing 3D woven composites to two-dimensional (2D) ones reveals several clear 

benefits, such as increased mechanical stability, higher damage tolerance, and enhanced 

interlaminar fracture toughness (Guo et al 2021). Layer-to-layer (LTL) and Through-The-

Thickness (TTT) interlocks are the two main categories into which three-dimensional woven 

composites can be further divided a full cell model with material thickness taken into 

account was developed (Zhou et al 2021). To assess the impact of fiber thickness and 

breadth regarding the stiffness parameters of 3DWOC-LTL, the inner arrangement of cells 

was used as the unit cell to reduce computational complexity. An integrated cell model with 

surfaces and interiors method, which strikes a compromise between computing efficiency 

and accuracy requirements, was created to take the place of the complete cell model in 

recognition that ignoring surface structural properties might lead to erroneous predictions 

(Dang et al 2023). 

Guo et al (2021) used in 3D woven composites in structural design depends heavily on the 

thorough comprehension and evaluation of uncertainties arising from automated production 

processes. Calculated models have to be combined with measurements regarding statistical 

error and transmission techniques to resolve these inherent problems. Yaacoub et al (2020) 

proposed some circumstances; nevertheless, the integration can provide serious difficulties 
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and computational time limits. Peng et al (2021) evaluated a unique Multiscale approach for 

estimating variability integrating sensitivity analysis, broad and finite element analysis is 

introduced. Zheng et al (2020) explored the main goal of assessing 3D interlocking weaved 

composites' and warp reinforced LTL (WRLTL). To produce the required dataset, a two-step 

numerical simulation is used to train and evaluate the model. Li et al (2020) addressed the 

model allows for the establishment of a framework that reduces the amount of computing 

resources needed to evaluate the significance of each determining the variance in 

macroscopic features. Behera et al (2022) provided that affects the material's tensile reaction, 

and the sensitivity data is a useful tool for reducing on a macro scale. Perera et al (2021) 

described the growing application of 3D woven composites in the automotive and aviation 

industries, which offer improved mechanical stability, superior damage tolerance, and 

increased interlaminar fracture toughness, calling for the creation of effective modelling 

tools for their analysis and design.  Montemurro et al (2021) evaluated to anticipate 

mechanical reactions and characterize failure behaviours of 3D woven composites; the work 

provides a general multi-scale analytical model. Lee et al (2019) used the predictive power 

of the model is evaluated for several unit cell model schemes, and it is verified using 

available experimental and numerical data. Predicting composites' mechanical reactions is 

most accomplished using the technique. Xiang et al (2020) proposed the correlations 

between the number of weft layers and mechanical qualities and yarn density are suggested 

to be quantified using exponential and linear models, respectively. The findings emphasize 

the usefulness of the analytical model in assisting with the examination and development of 

different three-dimensional woven composites. 

 

2. Multiscale preliminary failure assessment 

2.1. Initial strength constants 

The weight at which the highest failure index occurs inside a structure reaches a value of one 

and is referred to as the "initial failure load" (O_cr). The failure index is computed at 

different sites using the equivalent stress field in 3D 〖(σ〗_ji) when it is subjected to an 

arbitrary load (P). If O_cr = ∝ O represents the initial failure load, then 〖ασ〗_ji is a linear 

analysis that indicates the matching stress field. 

e(〖ασ〗_ji )=∝e(σ_ji)         (1) 

The expression of material failure conditions is represented by the function e(.)  in this 

paragraph. The failure criterion definition states that at the failure point, ∝e must equal one. 

This requirement can be written as follows: 

∝=
1

e
           (2) 

The first failure load can be calculated by defining ∝_min  as the smallest ∝ among all the 

spots. 

Ocr =∝min O          (3) 

In this case, the strength ratio, represented by ∝, is quite important. ∝_min is the numerical 

representation of the first failure load when P= 1. In general, 12 strength constants are found 
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for 12 loading cases. These include tensile strengths in the W, Z, and Y, directions, 

compressive strengths in the W^' Z^' Y^'directions, and shear strengths in the trio of 

principal geometry planes w_1,w_2,w_3 〖(w〗_2-w_3,    〖w_1-w〗_3,w_1-w_2)with the 

caveat that sign dependence can be present for shear strengths because of woven composites' 

non-symmetric structure. 

2.2 Multiscale examination of 3D woven composites 

Microscale components of a yarn are its fibers and matrix; mesoscale components are 

homogenized yarns and matrices. To separate the failure analysis from the micro and 

mesoscale, a Multiscale modeling approach is often used. A yarn's fibers and matrix are part 

of the microscale, whilst homogenized yarns and matrices make up the mesoscale. In the 

woven mesoscale model, strength constants simplify by ignoring stress gradients and are 

given as three-dimensional measurements. Efficiency is ensured by the use of mesoscale 

yarn failure criteria in conjunction with microscale computation in decoupled Multiscale 

analysis. Completely united at every yarn constituent integration point, microscale modeling 

is necessary for Multiscale analysis. Mesoscale models provide strain/stress fields, while 

microscale models use local stress fields to analyze failure. Microscale modelling is 

necessary for integration sites in yarn pieces, and fields are averaged to lessen the impacts of 

stress concentration. For a more thorough study, the MSG solid model projects microscale 

stress fields to the mesoscale. Using the maximum main stress and fiber failure criteria, the 

failure criterion computes strength ratios for matrix and fiber. 

e =
σ11

W
= 1,     if σ11 > 0    

e =
|σ11|

W′ = 1,    if σ11 < 0        (4) 

The parameters W   and W^' denote the fiber's tensile and compressive strengths. Creating a 

failure criterion using an SVM model aims to provide a functional expression that can 

replace the microscale Finite Element Analysis (FEA) process in an efficient and 

fundamentally similar way. 

e(σ̅ji) = α          (5) 

2.3. Developing the yarn failure criteria 

Support Vector Machines (SVM) in a Multiscale analysis are used to develop yarn failure 

criteria. High-dimensional feature space-based systems, or SVMs, provide precise and 

effective failure criteria without supposing a particular functional shape. The computational 

efficiency is improved by combining this method with microscale modelling and the use of 

Mechanics of Structure Genome (MSG) models. SVMs may be used to optimise failure 

analysis methods for advanced material design, as shown by the derived criteria, which show 

higher accuracy in predicting early failure intensity in 3D woven composites.  

2.3.1 Support Vector Machines (SVM) 

SVM are high-dimensional feature space feature-based intelligent systems that use a set of 

linear functions. These systems are trained via an algorithm based on optimization theory, 

which incorporates a statistical learning theory-derived learning bias. SVM is useful not just 
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for classification tasks but also for solving functional approximation and regression 

problems. Considering a training batch of data T={[w_j,z_j ]∈R^m×R,j=1,……,k}   SVR is 

to develop a function 𝑘 that most accurately represents the system responses within 𝑒, which 

can be stated as follows and consists of T pairs of data points; 

z = e(w) =< w. φ(w) > +a          (6) 

Where Z∈Rthe system response and W∈ R^n are the n-dimensional vectors forming the 

inputs. The weight vector is denoted by w, and the bias term is represented by a. φ(w)  

provides the connection between the parameter area k and R at another level. 

Kε(w, z, e) = |z − e(w)| = max(0, |z − e(w)| − ε)    (7) 

Where ε is an accuracy measure that indicates the tube's radius surrounding the approach of 

regression and e is a function with real values on the input domain W w∈W,z∈R. 

 

Figure 1One-dimensional linear regression problem's sensitive band [Source: Author] 

 

Figure 2The loss that is linearly insensitive to ε for both 0 and non-zero [Source: Author] 

The amount spent on training points due to mistakes is measured by the variables with slack 
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ξ in Figure 1. For every point inside the band, these are zero. The form of linear losses 

insensitive to ε as a function for both zero and non-zero ε is shown in Figure 2. The primary 

problem for optimizing the regressor's generalization performance can be formulated as 

follows 

minimize 
1

2
|x|2 + D ∑(ξj + ξ̂j)

k

j=1

 

subject to (< x. φ(wj) > +a) − zj ≤ ε + ξj 

zj − (< x. φ(wj) > +a) ≤ ε + ξ̂j 

ξj, ξ̂j ≥ 0, j = 1,2, … … . , k        (8) 

Where Dis is a predetermined value and ξ,ξ are not working variables that indicate limits on 

the system's outputs, both upper and lower. 

2.4 Model verification and failure forecasting 

To record the beginning, accumulation, and spread of the composite's damage, use the 

notation DD-EE-FF. Pure matrix tensio, pure matrix compression, fiber tension, fiber 

compression, matrix tension, and matrix compression are a few of the failure types. 

2.4.1 Three-dimensional woven composites (3DWOC) -During the thickness  

The predictions show good agreement with finite element (FE) and real data, indicating that 

ELE-based mechanical response and progressive failure analysis are accurate. The damage 

begins in sub-cell 31's WFYE under tensile stress. Similarly, under weft tensile loading, 

damage starts in sub-cell 33's BYE and ends with FT damage in sub-cells 11, 13, 15, and 

17's WFYE. The expected failure sequence is confirmed by numerical findings and 

experimental observations. 

2.4.2 Three-dimensional woven composites- Layer to layer (3DWOC-LTL)  

ELE strength is used to analyze the mechanical response and failure patterns of 3DWOC-

LTL (T300 carbon fibers, HCGP-1 matrix), which shows different failure sequences in the 

warp and weft tensile loading. The analytical model's accuracy and logical consistency are 

validated using simulations and experimental validations. However, as previously reported in 

studies, 3DWOC-WRLTL, which uses T700 fibers (weft, warp), T300 fibers (binder), and 

TDE-86 epoxy resin, offers comprehensive progressive failure predictions under warp tensile 

loading. Table 1 shows the fiber properties, matrices, and geometry parameters for the 

3DWOC that is being studied 
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Table 1Geometric parameters for TTT- 3DWOC, LTL- 3DWOC, and WRLTL- 3DWOC 

[Source: Author] 

Sections TTT - 3DWOC LTL - 3DWOC WRLTL - 3DWOC 

weaving 

yarn 

Woven 

thread 

Binder 

thread 

weaving 

yarn 

Binder 

thread 

weaving 

yarn 

Woven 

thread 

Binder 

thread 

Li 3 2 1 5 4 8 7 7 

Ni(K) 11 11 1 2 2 11 11 2 

di(μm) 6.92 6.92 6.92 7.0 7.0 7.0 7.0 7.0 

We(mm) 2.14 1.83 0.36 1.21 1.00 1.60 1.60 0.80 

Gi(mm) 2.54 2.20 2.20 2.85 1.00 3.32 3.32 3.32 

hi(mm)       0.33     0.38 0.11 0.15 0.13 0.31 0.31  0.15 

 

3. Results 

3.1 Mesoscale and meso-microscale analysis 

The mesoscale model uses its matrix's greatest main stress criterion. Apart from the SVM-

derived failure criterion, additional criteria like as maximal tensile (Maximum pressure). 

Mesoscale Plain Weave Composites Model, Figure 3. 

The definition of the Maximum pressure conditions for loss is as follows: 

e =
σ11

W
= 1         e =

σ22

Z
= 1        e =

σ33

Y
= 1      (9) 

e =
|σ11|

W′ = 1    e =
|σ22|

Z′ = 1e =
|σ33|

Y′ = 1      (10) 

 

Figure 3 Mesoscale model for plain weave composites [Source: Author] 
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When there are compressive stresses, and 

e =
|σ23|

Q
= 1e =

|σ13|

S
= 1   e =

|σ12|

T
= 1         (11) 

The substance is subject to shear pressures. 

This is one way to express the Tsai-Wu failure criterion: 

e = E1σ11 + E2σ22 + E3σ33 + E11σ11
2  + E22σ22

2 + E33σ33
2  + 2E12σ11σ22 +

2E13σ11σ33 + 2E23σ22σ33 + E44σ23
2 + E55σ13

2 + E66σ12
2 = 1    (12) 

Benchmark findings are obtained by evaluating the SVM-based yarn failure criterion using a 

thorough meso-micro scale study. The beginning strength constants are found by macroscale 

laminate analysis. Using microscale MSG dehomogenization and maximum primary stress 

requirements, yarns are analyzed to determine the minimal strength ratio (α2 and α3) and 

matrix strength ratio (α1). The beginning strength (αP) for textile composites is computed 

using a 2D MSG microscale model. As the 3D stress field is recovered at the microscale by 

the MSG model from a 2D domain, computational efficiency rises. Using a microscale 

square-packed model, effective stiffness and strength constants for yarns are obtained in 

Figure 4. 

 

Figure 4. Square packed model at microscale [Source: Author] 

3.2 Comparing mesoscale and meso-micro-scale models  

Mesoscale analysis, especially using SVM, exposes the weakness of the yarn strength ratio 

in comparison to the matrix ratio. Out of all the models, SVM has the best accuracy. Various 

strength constants exhibit a notable loss of accuracy in traditional mesoscale models, 

particularly under Z′ stress. Table 2 displays the yarn's elastic constants and effective 

strength constants (MPa). 
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Table 2. Elastic yarn constants and effective yarn strength constants (MPa) [Source: Author] 

Material Yarn 

E1 (MPa) 139700 

E2 = E3(MPa) 9537 

G12 = G13(MPa) 4700 

G23(MPa) 3060 

v12 = v13 0.252 

v23 0.259 

X 1518.86 

X′ 1215.09 

Y=Z 49.21 

Y′ = Z′ 178.29 

R 56.96 

S=T 41.80 

The damage initiation sites revealed by several models, such as SVM and meso-micro, are 

comparable. Critical failure start sites are successfully identified by SVM, which matches 

Hashin and Tsai-Wu criteria with very few modifications. Because sub-scale modeling 

assumes certain equations and coefficients, traditional criteria based on microscale modeling 

produce a variety of forecasts. However, the accuracy is improved by simply developing a 

failure criterion based on SVM without assuming a particular functional form and by 

combining data from microscale models, as shown by the results in Table 3. 

Table 3. Initial constants of strength (MPa) [Source: Author] 

Model Meso-

micrometer 

range 

SVM Hashin Tsai-

Wu 

Maxim

um 

stress 

Difference 

(SVM) 

Difference 

(Hashin) 

Differenc

e (Tsai-

Wu) 

Max-

stress Diff 

X = Y 149.81 146.54 143.81 147.50 150.60 2.18% 4.01% 1.54% 0.53% 

X′ =  Y′ 294.25 281.48 267.83 234.71 253.46 4.34% 8.98% 20.23% 13.86% 

Z 39.91 38.73 32.63 36.22 38.06 2.95% 18.25% 9.24% 4.64% 

Z′ 144.60 140.78 200.48 210.55 137.89 2.64% 38.65% 45.61% 4.64% 

R=S 22.94 22.86 24.03 23.41 24.10 0.35% 4.76% 2.06% 5.05% 

T 19.10 18.92 19.34 19.23 19.36 0.92% 1.24% 0.67% 1.35% 

3.3 Analysis of Computational Efficiency 

For strength constants under six instances, meso-micro scale modeling required 8.1 hours of 

work. 0.32 hours for the same SVM mesoscale modeling. After sampling and microscale 

analysis of MSG, the SVM model took 8.3 hours to complete. Little time is needed for 
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Tensor training. It can take hours for a novice and minutes for an expert to alter a hyper 

parameter, depending on the user's knowledge level. Not include hyper parameter 

modification; the comparison is limited to computing time. In terms of loading scenarios, 

Figure 5 shows the computation time for SVM and meso-micro size models. The yarn failure 

criterion requires a one-time 8.3-hour computation for the initial SVM model. For a variety 

of computationally demanding analyses, the suggested SVM model provides an effective 

method for creating failure envelopes with little loss of accuracy. 

 

Figure 5. The computing time of the SVM model and its meso-micro size [Source: Author] 

Benchmarking confirms that the suggested model is accurate and effective, and it correlates 

well with the outcomes. Accuracy decline in certain constants is observed in traditional 

criteria. By underlining the shortcomings of conventional criteria, the suggested criterion 

provides more precise predictions under multiaxial loads. Assumptions at the root of 

traditional criteria's inaccuracy can exist. Applying an SVM model can improve the precision 

of developing failure criteria for Multiscale analysis and experimental data. 

 

4. Conclusion  

The yarn failure metrics and a Multiscale analysis methodology, this study demonstrates the 

efficacy of a Support Vector Machine (SVM)--based model for forecasting the initial failure 

intensity in 3D woven composites. When compared to conventional mesoscale models, the 

SVM model exhibits higher accuracy, which overcomes the shortcomings in failure 

predictions under intricate multiaxial stresses. Mechanics of Structure Genome (MSG) 

model integration improves computing performance and guarantees a solid and trustworthy 

analysis. The research highlights the usefulness of SVM in developing accurate failure 
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criteria for Multiscale evaluations and experimental data related to composite materials. The 

suggested approach offers important insights into failure behavior by drawing attention to 

the flaws of traditional criteria. This work highlights the importance of ML techniques in 

optimizing failure analysis processes for better material design and dependability, to making 

a significant contribution to the field of predictive modeling in composite materials. 

The yarn failure metrics and a Multiscale analysis methodology, this study demonstrates the 

efficacy of a Support Vector Machine (SVM)--based model for forecasting the initial failure 

intensity in 3D woven composites. When compared to conventional mesoscale models, the 

SVM model exhibits higher accuracy, which overcomes the shortcomings in failure 

predictions under intricate multiaxial stresses. Mechanics of Structure Genome (MSG) 

model integration improves computing performance and guarantees a solid and trustworthy 

analysis. The research highlights the usefulness of SVM in developing accurate failure 

criteria for Multiscale evaluations and experimental data related to composite materials. The 

suggested approach offers important insights into failure behavior by drawing attention to 

the flaws of traditional criteria. This work highlights the importance of ML techniques in 

optimizing failure analysis processes for better material design and dependability, to making 

a significant contribution to the field of predictive modeling in composite materials. 
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