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In this paper, we give some basic results concerning Toeplitz operators whose symbol is of the
form f(0)$, where ¢ is a radial function and f() is a polynomial in e®, then use these results to
characterize all Toeplitz operators which commute with them on the Bergman space.
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1. Introduction

Let D be the open unit disk in the complex plane and dA be the normalized Lebesgue area
measure on ID. The space of all complex-valued measurable functions f on D such that

IFllz = (f, If (D12 dA()"? < w,

is denoted, as usual, by L?(ID). The Bergman space L2 (D) is the closed subspace of L? (D)
consisting of holomorphic functions.

Let P be the orthogonal projection from L?(D) onto L2 (D). For a function ¢ € L® (D), the
Toeplitz operator T,, with symbol ¢ is the operator T: Lz (D) — Lz (D) defined by

Tof = P(¢f), for all f € L5(D).
Itis clear that ||Tg|| < ||¢]]e and Ty is bounded.
The Bergman space is a reproducing kernel Hilbert space, the reproducing kernel is given by
1 kW)  _ (1-1z1?)

k,(w) = T and the normalized reproducing kernel is TR

The class of quasihomogenous symbols is one of the most interesting class of symbols of
Toeplitz operators, founded by Louhichi and Zakariasy in 2005. In this artical, we define
Toeplitz operator like the quasihomogenous Toeplitz operator and call it poly-
quasihomogenous Toeplitz operator, and we give some basic results concerning such
operator.
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2. Preliminaries

A function £ is said to be quasihomogeneous of degree p, where p is an integer, if it is of the
form e? ¢, where ¢ is a radial function. In this case the associated Toeplitz operator Ty is
also called quasihomogeneous Toeplitz operator of degree p. Such functions were studied in
[?] and [?]. The reason that we study such family of symbols is that any function f in L?(D)
has the following polar decomposition

f(re®) = Yrez €™ fi (),
where f; are radial functions in L?([0,1], 7dr).

Now, we need to introduce the Mellin transform that has been a very useful tool in obtaining
many results. The Mellin transform £ of a radial function f in L'([0,1], 7dr) is defined by

f =y fyr=ar.
The following known lemma, is also helpful.
Lemma 2.1 Let k,p € N and let f be an integrable radial function. Then
T e (2) = 2(k +p + 1)f 2k +p + 2)zk*P
and
o0y @) = ot _p 4 1)7 2k p + 297 iﬁi . I;.S "

Now, we list a set of theories and facts about quasihomogenous Toeplitz operators, that we
used in our results

Theorem 2.2 A bounded function f is quasihomogenous of degree p € Z if and only if, for
all integers n > 0, there exists a,, € C such that

o {0 if n <max(—p,0),
r(z") = a,z™P  if n > max(—p,0).

It is important and helpful to know that the Mellin transform is uniquely determined by its
values on any arithmetic sequence of integers, In fact we have the following theorem.

Theorem 2.3 [Remmert, 1998] Suppose that f is a bounded analytic function on
{z: Re(z) > 0} which vanishes at the pairwise distinct points z;, z,. .., where inf{|z,|} > 0
and

Yns1 Re(zi) = oo. Then f vanishes identically on {z: Re(z) > 0} .

Remark 2.4 [Louhichi, 2007] We can apply the above theorem to prove that if f €
L([0,1],rdr) and if there exist k,,p € N such that

f(pn+k0) =0 foralln €N,
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then f(z) = 0 forall z € {z:Re(z) >2}andso f = 0.

Theorem 2.5 [Louhich and Zakariasy, 2005] Let ¢ be a bounded radial function and e??y
be a quasihomogenous bounded function of degree p > 0. If TeT ooy = Tivoy,Te then,

Y = 0 or ¢ is constant.

Theorem 2.6 [Louhich and Zakariasy, 2005] Let p = k > 0 be two integers and ¢ and y
two bounded radial functions. If

Teiped)Te-ikew = Te-ikewTeipeqb,
thengp = 0ory = 0.

Theorem 2.7 [Louhich and Zakariasy, 2005] Let p,s > 0 be two integers and ¢ # 0 a
bounded radial function. If there exists a bounded radial function y not identically zero,
such that

Tei$H¢Teip6¢ = TeipewTeised)
then, ¥ is unique up to a constant.

Lemma 2.8 [Louhich and Zakariasy, 2005] Let e*®y be a bounded quasihomogenous
function of degree k > 0 and let

p(re®) = Ypez ePP¢p(r) € L(D, dA).
Then,
T¢Teik9w = Teik9¢T¢ = Teip9¢pTeik6¢ = TeikewTeiped,p, Vp eZ
Commutants of T is the set of all those operators that commutes with it and bicommutants is
the set of all operators that commute with all operators in the commutant.

In (2008), Louhichi and Rao gave a nice relation between commutants and bicommutants of
a quasihomogenous Toeplitz operator; they proved the commutants of a quasihomogenous
Toeplitz operator is equal to its bicommutants. In other words, they proved that the following
theorem.

Theorem 2.9 Let ¢, Y € L*(D,dA). If T, and T, are Toeplitz operators which commute
with a quasihomogenous Toeplitz operator, then they commute with each other.

3. Main Results
We introduce new definition and some nice properties about it.

Definition 3.1 A function ¥ is said to be poly-quasihomogenous function of degree m > 0, if
¥ can be written as W(z) = ¥(re'?) = f(e®)p(r), where f(e®) =¥, a;e¥? is a
polynomial function in e of degree m, and ¢ (r) is a radial function.

If such a function W(re®) = f(e®)p(r) is the symbol of a Toeplitz operator then we will
say that the Toeplitz operator Ty is poly-quasihomogenous of degree m.
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The following lemma gives the value of the poly-quasihomogenous Toeplitz operator of
degree m and the adjoint of the poly-quasihomogenous Toeplitz operator of degree m at the
elements of the orthogonal basis of the Bergman space. It is a very useful formula and we
will use very often.

Lemma 3.2 Let f(e®®) = XL, ;e be a polynomial function in e'® of degree m, and
¢ (r) a bounded radial function., then Yn > 0:

Treityy (") = Tgm g eiiog(2") = o 2a;(n+j+ DP@2n + j +2)z";

e o (Zhe0 2@(n—j+ P2 —j+2)2" if n<m,
Tf(eL9)¢(Z ) =T i6 (Z ) - m — . I . n—j .
f(e®)e im0 2aj(n—j+ De(2n—j+ 2)z ifn=>m.
Proof.
Tf(ei9)¢(Zn) = TZ;ZO a],eije (Zn) = ;Tl:O Ta]-eij6¢(zn) = ;T'L:O Zap(n +] + 1)&(27‘1— +] +
2)z",
Also,
T einyy (2") = TZ}'ioa_fe“'f"cb(Zn)

=X} Tge-iiop(z") by Lemma??.

Yio2a(n—j+DPR2n—j+2)z"7 ifn<m,
CEny 2g(n—j+ 1)PR2n—j+2)z") ifn=m.

The following theorem gives us an important results about the product of two poly-
guasihomogenous Toeplitz operators.

Theorem 3.3 Let ¥; and ¥, be two non-zero bounded poly-quasihomogenous functions of
degrees m and s respectively. If there exists a function ¥5 such that Ty, Ty, = Ty,, then ¥;

is a sum of at most (m + s) quasihomogenous functions, and the highest degree of them is
(m+s).

Proof. Assume
¥ = f(ei9)¢1 and WY, = g(eie)d’z:

whereg, and ¢, are radial functions, and f(e'®) = Y7L ape™® and g(e®) = X5, bje°.
Now, by Lemma 3, we have vn = 0

Tl_IJquJZ (Zn) = nglzo apeipe.d)sz.;:O bjeij6¢2 (Zn) = nglzo apeip6¢1 (Z;:o 2 b] (Tl +
j+1D@,2n+j+2) z™) =Y 2b(n+j+1)d,2n+j +
DTym o eirog, @) =Yoo 2bj(n+j+ 1D)d,2n+j +2). 205, 2a,(n +
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j+p+1DP(2n+2j +p +2)znH*P =Y5 0 Zpo dap(n+j+p+
Dbi(n+j+ 1Dgo(2n+j +2)p1(2n+ 2j + p + 2)z"IHP,
Now, if we denote 1,,,,; = 4a,(n+j +p + 1)bj(n+j + 1)$,2n+j + 2)p,(2n+ 2j +
p + 2). Then we get
T‘[J1T1[J2 (Zn) = ;:0 Z?:O An,p,jzn+j+p-

By Theorem 2.2, for all j,p, An,p,jzn“‘f*p =T, where hy, ; is a quasihomogenous
functions of degree p + j. Therefore,

Ty Ty, =2jp Th,; =Ty, n,; = Tw,,where 0 < j <s,and 0 <p < m.
Hence W5 is a sum of (m + s) quasihomogenous Toeplitz operators. Moreover, the highest
degree of them is (m + s).

Remark 3.4 The above theorem is true if we replace ¥; and ¥, by there conjugates, we can
prove them by using the adjoint operator.

The following theorem states that the only idempotent poly-quasihomogenous different than
the identity poly quasi ( where the identity poly-quasihomogenous is T;) is the zero poly-
guasihomogenous.

Theorem 3.5 Let f(e'®) = X%, a;e"? be a polynomial function of ' of degree m > 0

- - - 2 _ . _
and ¢ is a bounded radial function. If Tf(eig)q,) = Tf(e’9)¢' then ¢ = 0.

Proof. By Lemma , we have vn = 0
m .
Tf(ei9)¢(Zn) = ijo 2a;j(n+j+1)p@2n+j+2)z",
and
m T ~ .
Tf pioy (2™ = Z 40 (n+j+ 1) +2j+ DP@n+j +2)P(2n + 3j + 2) 272,
j=0

. 2 _
Since Tf(eig)qb = Tf(e

Z;”:O 2ai(n+j+ DP@2n+j+2)z" = Z}":O 4 ajz m+j+1)(n+2j+1)¢@2n+
j+2)p@2n+3j +2) z"2 (3.1)

In the above equation, the highest degree of z on the right hand side is n + 2m, however the
coefficient of z™**2™ is zero on the left hand side. This implies that

<13(2n +m+ 2)(13(271 +3m+2)=0.

i6)g5: then we have

Then, either p(2n +m +2) = 0 or p(2n+3m +2) = 0, for alln = 0, but ¥, y ﬁ =
oo. Therefore, by Remark 2.4, ¢ = 0.

The following states that a Toeplitz operator with bounded radial symbol commutes with a
poly-quasihomogenous Toeplitz operator only in the trivial case.
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Theorem 3.6 Let ¢, and ¢, be two bounded radial functions, and f(e?) = el? a
polynomial in e®® of degree m. If Ty, commutes with T Tt (19, then ¢, = 0 or 4)1 is
constant.

Proof. Since Ty, commutes with Tf(ei6)¢2, then vn > 0 we have
T Ty ajeop, (") = Typ ajetiog, o, (27

On the left side of the above equation, the monomial in z of the highest degree is z"*™, and
it comes only from Ty, T, ,ime, (z™). On the other hand, the monomial in z with highest
degree on the right side of the above equation, also is z™*™ and it comes from
T meim9¢2T¢1(Zn) only. Therefore, vn = 0

a
Tp,Tq, eimog, (2") =T, imoy Ty, (2™), for everyn = 0.
According to Theorem 2.5, equation (3.2) implies that ¢, = 0 or ¢, is constant.
Remark 3.7 In the above theorem, if T, commutes with TW by then we have the same
conclusion i.e. ¢, = 0 or ¢, is constant.

The following theorem states that poly-quasihomogenous Toeplitz operator and adjoint of
the poly-quasihomogenous Toeplitz operator commute only in the trivial case.

Theorem 3.8 Let ¢; and ¢, be two bounded radial functions, and f(e*®) = X7, a;e'/®
and g(e™®) = ¥3_, bje' be two polynomials in e*® of degrees m and s respectively, where
m=s=>0.If

Tf(ei9>¢1Tg(ei9)¢z - Tg(eie)cﬁsz(ei@m'

Proof. Note that T* 99, TM ,

Z,_ ajeli® g, COMMutes with T—- Tzizob—je—ijeqbz, then vn > 0,

If T
9(®)e;

fe®)py =
Z;'nzoajel]9¢1 Z}g':obje_ued)z(z ) = Tzizobje—ue(psz}rlzoajeue¢1(2 )

Now the terms in z of degree (n — s+ m), on both left and right sides of the above
equation, come only from Tq, emog T and T+ T, eimog, respectively. This

implies that

b_se_iseqb y b 6—1594)

Tameim9¢1Tb_se_ise¢2 = Tb_se_i59¢2Tameim9¢1'
By Theorem 2.6, the above equation implies ¢p; = 0 or ¢p, = 0.
Theorem 3.9 Let ¢;,and ¢, be bounded radial functions, and f(e*®) = X7, a;e”® and

g(e™®) = X%_, bje'® be polynomials in e’ of degrees m and s respectively. If Tyivo g,
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commutes with T ,then ¢, = 0or ¢, = 0.

(fF(e)+g(ei®)) ¢,
Proof. If p > 0, then we have Vvn = 0

. . ny — - ; n
Tewog, T peioyige@ne, @) = T ipeio)rgie@e, | e?0p, 77

In the above equation the monomial in z of the smallest degree is z"*P~5 on both sides,
Therefore,

Teip9¢1Tb_se_isg¢2 = Tb_se_isg¢2Teip9¢1'
Then directly, by Theorem 2.6 , ¢, = 0 or ¢, = 0.

If p < 0, then we can prove the same result by using the term of the highest degree in z is
Zn+m+p_

The following theorem shows the uniqueness of the commutant of poly-quasihomogenous
Toeplitz operator.

Theorem 3.10 Let f(e*) = 3L, a,e™? and g(e'f) = %<0 b;e'% be two polynomials in
e of degrees m > 0 and s > 0 respectively, and ¢, # 0 bounded radial function. If there
exists a bounded radial function ¢, not identically zero, such that

Tre®)g, Tg(e®)p, = Tg(ei®)p, fe®)gy’

then ¢, is unique up to a constant factor.

Proof. If Tym | a,etrop, COMMULES with TZ§:0 bje0g, thenvn > 0

. .. ny — .. . n
ngnzo apelped)lTZ}g':o bjel]9¢2 (Z ) = sz:_:O bjel]6¢2 TZ;ano apetp9¢1(z )

On the left side of the above equation, the monomial in z of highest degree is z"*S*™ and it
comes only from T, imo,, T}, ,is64,, @nd on the right side the monomial of highest degree

in z is also z"*S*™ and it comes from the product T, _iso, T _ime, . Therefore,
bse™" ¢, " ame b1

Tameim9¢1Tbseise¢2 = Tbsei59¢2Tameim9¢1-
By Theorem 2.7, the above equation implies that ¢, is unique up to a constant factor.
Remark 3.11 If T commutes with T—-, , then ¢, is unique up to a constant

fe®)y - (e,
factor, we can prove it by using the adjoint operator.

Corollary 3.12 Let ¢, and ¢, be two radial functions, and f(e®) =3, a,e® and
g(e'®) = XL, bje’® be two polynomials in e® of degree m > 0. If T 0, cOmMMutes

with Tg(ei®yp,: then ¢, = c¢;.

Proof. We know each Toeplitz operator commutes with itself, therefore Tt (eiyp, COMMUteES

(e
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with itself. And since

Tre0ypy Tge®¢, = Tgei®)p, | £(e0)ps

then, by theorem 3.10, there exists a constant c such that ¢, = c¢;.

Remark 3.13 The above theorem is true if we replace f(e!®) and g(e'®) by there
conjugates, we can prove it by the adjoint operator.

Theorem 3.14 Let ¢; and ¢, be two bounded radials, and f(e®®) =3Y", a;e'/®
polynomial in e®® of degree m. Then T ipe 4, COMMUtES with Tt ey, if and only if T,iwog,
commutes with 7 ,ijo 5, for all 0 < j < m. Moreover if p <m and a,, # 0, then there exist
¢ € Csuchthat ¢, = cp;

Proof. Since f(e®)¢, = X%, aje®¢,, then directly by Theorem 2.8 T ,ive,,, COMMUteS

with Tf(ei9)¢2 if and only if Teip9¢1 commutes with T €%, forall0 <j <m.

a

Ifp <manda, # 0, then, by the above, T,ipe,, cOMMutes With T, ,ipo5 .
But the commutant of Tapeip9¢2 iS unique, so by Theorem 2.7, ¢; = c¢,.
Remark 3.15 By theorem 2.9, we can see that T, e, commutes with T, ,ue, , for all
0<lLp<m.
Corollary 3.16 If T ,ips, commutes with Ty, where (2) = £% ek, then
(@) Tgixo,, commutes with T ipe ,, , for all k € Z.
(b) Teikewk commutes with Teimewm, forallm,k € Z.
(b) If ¥, # 0, then there exist ¢ € C such that ¢, = cyy,.

Theorem 3.17 Let ¢, and ¢, be two radial functions, and f(e’) = ¥, a,e® and
g(e®) =3%_ bje’® be two polynomials in e’ of degrees m and s respectively. If
Tf(eie)d)ng(ei@)d)z = 0, then ¢1 = 0 or ¢2 = 0

T

Proof. Since T 9(e9)¢,

Fei®ep, =0,thenvn>0T

0y |

9(ei)p, (") = 0.

By Lemma 3
Tre0yp, Tget®)p, (an m
=Z Z 4ay(n+j+p+Dbi(n+j+ Dd,2n+j + 2)s(2n
j=0 p=0 ]
+2j+p+2)z"HP

this is polynomial in z of degree (n + m + s) and equal zero for all z € D, this implies that
the coefficients are all zeros. Therefore, ¥ n > 1 the coefficient of the highest degree of z is
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4da,(n+s+m+1Dbs(n+s+1DP,2n+s+2)P,(2n+2s +m+2) =0,
This implies that Vn > 0
$,2n+s+2)=0 or ¢;(2n+2s+m+2)=0.
Now, let B; = {n: ¢;(2n + 2s + m + 2) = 0} and B, = {n: ,(2n + s + 2) = 0}.

Itis clear

1
—— =00
ZnEN n+1

Since

1 1 1
—_—< R + E—
ZnEN n+l — Zne B1 on+1 Zne By on+1

. 1 1 .
at least one of the series }.,¢ g, 1 O YneB, vy diverges, and so by Remark 2.4 ¢, = 0
or ¢2 = 0
Theorem 3.18 Let ¢, and ¢, be bounded radial functions, and f;(e*) = X7, a;e'/*,
f2(e'®) = Xt be?, g1(e™) = X5, ¢ie? and g,(e'®) = X¥_, d;je”® polynomials in
el of degrees m, m, s and p respectively, where m>s>0 and m >p > 0. If

(Tr, ei0yp, T Ty, (e0yp,) COMMuUtes with (T, ioy, + Ty i6)4 ), then 3¢ € C such that
¢z = cés.

Proof. Since (T, ,i0y4, + T, (ei9)p,) COMMutes With (T, ey, + T, i6)4 ), then Vn =
0

Tt ep, T Taye00.) Thei®)p, T Tgpe®)p,)(Z") = (Tpyeifyg, +
Toe®)0:) Tr ey, T Tgyei0)9,)(Z)

In the above equation the monomial of z of the highest degree is z"*2™ on both sides,
Therefore,

T T T

ameim9¢1 bmeim9¢2 = bmeim6¢2Tameim0¢1-

Then directly, by Theorem 2.7,then 3 ¢ € C such that ¢, = c¢;.

Remark 3.19 The above theorem is true, if we replace f;(e®) and f,(e'®) by there
conjugates.

Theorem 3.20 Let ¢, ¢,,1;, and , be bounded radial functions, and f(e®) =
o ae?, fo(e") = ¥%_, bje? polynomials in e of degree m and g,(e’) =
5=0 cie"? g2(e®) =XY_; d;e’ polynomials in e of degree s, where s <m. If

(Tfl(eie)d)1 + Tgl(ei6)¢2) commutes with (sz(eie)wl + ng(eig)wz), then ¥, = ¢;¢, and
V2 = 2.

Proof. Since (T, ,i0y5, + T (ei6)p,) COMMutes With (T, iey, + T, 6y ), then Vi =
0

Nanotechnology Perceptions Vol. 20 No. S4 (2024)



465 Raja'a Al-Naimi On Toeplitz Operators with....

Ty

L@y, (

(Tf1(€i6)¢1 + Tg1(ei9)¢2)(sz(ei9)¢1 + ng(eig)wz)(zn) = (sz(ei9)¢1 +
i . n
Tf1(€“9)¢1 + Tgl(e’9)¢2)(z ) (3.3

In the above equation the monomial in z of the highest degree is z**2™ on both sides,
Therefore,

Ta_meimsq:)lTbmeimelp1 - Tbmeim9¢1Tameim91p1'

Then directly, by Theorem 2.7, 3 ¢; € C such that Y, = ¢, ¢;.

On the other hand, the terms in z of degree n + 2s, on both left and right sides of (3.3), come
from only T, ,isop T} gisoy, (2") + Ty giso Ty pisoy, (2") and Ty jiso, Ty giseq (2") +
T gieisoy, Te eist g, (z™) respectively.

Buty; = c1¢1, 50

Tcsei59¢2 Tdseisell)z (Zn) - Tdseiselpz Tcsei56¢2 (Zn)'

Then directly, by Theorem 2.7, 3 ¢, € C such that y, = c,¢,.

Remark 3.21 The above theorem is true, if we replace f;(e'?), f,(e'®), g1(e®) and
g (e'9) by there conjugates.
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