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In this paper, we give some basic results concerning Toeplitz operators whose symbol is of the 

form f(θ)ϕ, where ϕ is a radial function and f(θ) is a polynomial in eiθ, then use these results to 

characterize all Toeplitz operators which commute with them on the Bergman space.  
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1. Introduction 

Let 𝔻 be the open unit disk in the complex plane and 𝑑𝐴 be the normalized Lebesgue area 

measure on 𝔻. The space of all complex-valued measurable functions 𝑓 on 𝔻 such that  

 ||𝑓||2 = (∫𝔻
|𝑓(𝑧)|2 𝑑𝐴(𝑧))

1/2
< ∞, 

is denoted, as usual, by 𝐿2(𝔻). The Bergman space 𝐿𝑎
2 (𝔻) is the closed subspace of 𝐿2(𝔻) 

consisting of holomorphic functions. 

Let 𝑃 be the orthogonal projection from 𝐿2(𝔻) onto 𝐿𝑎
2 (𝔻). For a function 𝜙 ∈ 𝐿∞(𝔻), the 

Toeplitz operator 𝑇𝜙 with symbol 𝜙 is the operator 𝑇: 𝐿𝑎
2 (𝔻) → 𝐿𝑎

2 (𝔻) defined by  

 𝑇𝜙𝑓 = 𝑃(𝜙𝑓), 𝑓𝑜𝑟  𝑎𝑙𝑙  𝑓 ∈ 𝐿𝑎
2 (𝔻). 

It is clear that ||𝑇𝜙|| ≤ ||𝜙||∞ and 𝑇𝜙 is bounded. 

The Bergman space is a reproducing kernel Hilbert space, the reproducing kernel is given by 

𝑘𝑧(𝑤) =
1

(1−𝑧𝑤)2, and the normalized reproducing kernel is 
𝑘𝑧(𝑤)

||𝑘𝑧(𝑤)||2
=

(1−|𝑧|2)

(1−𝑧𝑤)2.  

The class of quasihomogenous symbols is one of the most interesting class of symbols of 

Toeplitz operators, founded by Louhichi and Zakariasy in 2005. In this artical, we define 

Toeplitz operator like the quasihomogenous Toeplitz operator and call it poly-

quasihomogenous Toeplitz operator, and we give some basic results concerning such 

operator.  
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2. Preliminaries 

A function 𝑓 is said to be quasihomogeneous of degree 𝑝, where 𝑝 is an integer, if it is of the 

form 𝑒𝑖𝑝𝜃𝜙, where 𝜙 is a radial function. In this case the associated Toeplitz operator 𝑇𝑓 is 

also called quasihomogeneous Toeplitz operator of degree 𝑝. Such functions were studied in 

[?] and [?]. The reason that we study such family of symbols is that any function 𝑓 in 𝐿2(𝔻) 

has the following polar decomposition  

 𝑓(𝑟𝑒𝑖𝜃) = ∑𝑘∈ℤ 𝑒𝑖𝑘𝜃𝑓𝑘(𝑟), 

 where 𝑓𝑘 are radial functions in 𝐿2([0,1], 𝑟𝑑𝑟). 

Now, we need to introduce the Mellin transform that has been a very useful tool in obtaining 

many results. The Mellin transform 𝑓 of a radial function 𝑓 in 𝐿1([0,1], 𝑟𝑑𝑟) is defined by  

 𝑓(𝑧) = ∫
1

0
𝑓(𝑟)𝑟𝑧−1 𝑑𝑟. 

The following known lemma, is also helpful.  

Lemma 2.1  Let 𝑘, 𝑝 ∈ ℕ and let 𝑓 be an integrable radial function. Then  

 𝑇𝑒𝑖𝑝𝜃𝑓(𝑧𝑘) = 2(𝑘 + 𝑝 + 1)𝑓(2𝑘 + 𝑝 + 2)𝑧𝑘+𝑝 

and  

 𝑇𝑒−𝑖𝑝𝜃𝑓(𝑧𝑘) = {
0 𝑖𝑓0 ≤ 𝑘 ≤ 𝑝 − 1

2(𝑘 − 𝑝 + 1)𝑓(2𝑘 − 𝑝 + 2)𝑧𝑘−𝑝 𝑖𝑓𝑘 ≥ 𝑝.
 

  

 Now, we list a set of theories and facts about quasihomogenous Toeplitz operators, that we 

used in our results 

Theorem 2.2  A bounded function 𝑓 is quasihomogenous of degree 𝑝 ∈ ℤ if and only if, for 

all integers 𝑛 ≥ 0, there exists 𝛼𝑛 ∈  ℂ such that  

 𝑇𝑓(𝑧𝑛) = {
0 𝑖𝑓 𝑛 < 𝑚𝑎𝑥(−𝑝, 0),

𝛼𝑛𝑧𝑛+𝑝 𝑖𝑓 𝑛 ≥ 𝑚𝑎𝑥(−𝑝, 0).
 (2.1) 

It is important and helpful to know that the Mellin transform is uniquely determined by its 

values on any arithmetic sequence of integers, In fact we have the following theorem.  

Theorem 2.3  [Remmert, 1998] Suppose that 𝑓 is a bounded analytic function on 

{𝑧: 𝑅𝑒(𝑧) > 0} which vanishes at the pairwise distinct points 𝑧1, 𝑧2. .., where 𝑖𝑛𝑓{|𝑧𝑛|} > 0 

and  

∑𝑛≥1 𝑅𝑒(
1

𝑧𝑛
) = ∞. Then f vanishes identically on {𝑧: 𝑅𝑒(𝑧) > 0} .  

Remark 2.4  [Louhichi, 2007] We can apply the above theorem to prove that if 𝑓 ∈
𝐿1([0,1], 𝑟𝑑𝑟) and if there exist 𝑘𝑜, 𝑝 ∈  ℕ such that  

 𝑓(𝑝𝑛 + 𝑘𝑜) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ, 
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then 𝑓(𝑧) = 0 for all 𝑧 ∈  {𝑧: 𝑅𝑒(𝑧) > 2} and so 𝑓 = 0 .  

Theorem 2.5 [Louhich and Zakariasy, 2005] Let 𝜙 be a bounded radial function and 𝑒𝑖𝑝𝜃𝜓 

be a quasihomogenous bounded function of degree 𝑝 > 0. If 𝑇𝜙𝑇𝑒𝑖𝑝𝜃𝜓 = 𝑇𝑒𝑖𝑝𝜃𝜓𝑇𝜙 then, 

𝜓 = 0 or 𝜙 is constant.  

Theorem 2.6 [Louhich and Zakariasy, 2005] Let 𝑝 ≥ 𝑘 > 0 be two integers and 𝜙 and 𝜓 

two bounded radial functions. If  

 𝑇𝑒𝑖𝑝𝜃𝜙𝑇𝑒−𝑖𝑘𝜃𝜓 = 𝑇𝑒−𝑖𝑘𝜃𝜓𝑇𝑒𝑖𝑝𝜃𝜙, 

then 𝜙 = 0 or 𝜓 = 0.  

Theorem 2.7 [Louhich and Zakariasy, 2005] Let 𝑝, 𝑠 > 0 be two integers and 𝜙 ≠ 0 a 

bounded radial function. If there exists a bounded radial function 𝜓 not identically zero, 

such that  

 𝑇𝑒𝑖𝑠𝜃𝜙𝑇𝑒𝑖𝑝𝜃𝜓 = 𝑇𝑒𝑖𝑝𝜃𝜓𝑇𝑒𝑖𝑠𝜃𝜙 

then, 𝜓 is unique up to a constant.  

Lemma 2.8 [Louhich and Zakariasy, 2005] Let 𝑒𝑖𝑘𝜃𝜓 be a bounded quasihomogenous 

function of degree 𝑘 ≥ 0 and let  

 𝜙(𝑟𝑒𝑖𝜃) = ∑𝑝∈ ℤ 𝑒𝑖𝑝𝜃𝜙𝑝(𝑟) ∈  𝐿∞(𝔻, 𝑑𝐴). 

Then,  

 𝑇𝜙𝑇𝑒𝑖𝑘𝜃𝜓 = 𝑇𝑒𝑖𝑘𝜃𝜓𝑇𝜙   ⟺   𝑇𝑒𝑖𝑝𝜃𝜙𝑝
𝑇𝑒𝑖𝑘𝜃𝜓 = 𝑇𝑒𝑖𝑘𝜃𝜓𝑇𝑒𝑖𝑝𝜃𝜙𝑝

, ∀𝑝 ∈ ℤ 

Commutants of 𝑇 is the set of all those operators that commutes with it and bicommutants is 

the set of all operators that commute with all operators in the commutant. 

In (2008), Louhichi and Rao gave a nice relation between commutants and bicommutants of 

a quasihomogenous Toeplitz operator; they proved the commutants of a quasihomogenous 

Toeplitz operator is equal to its bicommutants. In other words, they proved that the following 

theorem.  

Theorem 2.9  Let 𝜙, 𝜓 ∈ 𝐿∞(𝔻, 𝑑𝐴). If 𝑇𝜙 and 𝑇𝜓 are Toeplitz operators which commute 

with a quasihomogenous Toeplitz operator, then they commute with each other.  

  

3. Main Results 

 We introduce new definition and some nice properties about it.  

Definition 3.1 A function 𝛹 is said to be poly-quasihomogenous function of degree 𝑚 ≥ 0, if 

𝛹 can be written as 𝛹(𝑧) = 𝛹(𝑟𝑒𝑖𝜃) = 𝑓(𝑒𝑖𝜃)𝜙(𝑟), where 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃 is a 

polynomial function in 𝑒𝑖𝜃 of degree 𝑚, and 𝜙(𝑟) is a radial function.  

 If such a function Ψ(𝑟𝑒𝑖𝜃) = 𝑓(𝑒𝑖𝜃)𝜙(𝑟) is the symbol of a Toeplitz operator then we will 

say that the Toeplitz operator 𝑇Ψ is poly-quasihomogenous of degree m.  



459 Raja'a Al-Naimi On Toeplitz Operators with....                                                                           
 

Nanotechnology Perceptions Vol. 20 No. S4 (2024) 

The following lemma gives the value of the poly-quasihomogenous Toeplitz operator of 

degree m and the adjoint of the poly-quasihomogenous Toeplitz operator of degree m at the 

elements of the orthogonal basis of the Bergman space. It is a very useful formula and we 

will use very often.  

Lemma 3.2  Let 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃 be a polynomial function in 𝑒𝑖𝜃 of degree 𝑚, and 

𝜙(𝑟) a bounded radial function., then ∀𝑛 ≥ 0:  

 𝑇𝑓(𝑒𝑖𝜃)𝜙(𝑧𝑛) = 𝑇∑𝑚
𝑝=0 𝑎𝑗𝑒𝑖𝑗𝜃𝜙(𝑧𝑛) = ∑𝑚

𝑗=0 2𝑎𝑗(𝑛 + 𝑗 + 1)𝜙̂(2𝑛 + 𝑗 + 2)𝑧𝑛+𝑗; 

 

 𝑇
𝑓(𝑒𝑖𝜃)𝜙
∗ (𝑧𝑛) = 𝑇

𝑓(𝑒𝑖𝜃)𝜙
(𝑧𝑛) = {

∑𝑛
𝑗=0 2𝑎𝑗(𝑛 − 𝑗 + 1)𝜙̂(2𝑛 − 𝑗 + 2)𝑧𝑛−𝑗 𝑖𝑓 𝑛 < 𝑚,

∑𝑚
𝑗=0 2𝑎𝑗(𝑛 − 𝑗 + 1)𝜙̂(2𝑛 − 𝑗 + 2)𝑧𝑛−𝑗 𝑖𝑓 𝑛 ≥ 𝑚.

 

Proof.  

 𝑇𝑓(𝑒𝑖𝜃)𝜙(𝑧𝑛) = 𝑇∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃(𝑧𝑛) = ∑𝑚

𝑗=0 𝑇𝑎𝑗𝑒𝑖𝑗𝜃𝜙(𝑧𝑛) = ∑𝑚
𝑗=0 2𝑎𝑝(𝑛 + 𝑗 + 1)𝜙̂(2𝑛 + 𝑗 +

2)𝑧𝑛+𝑗. 

Also,  

 𝑇
𝑓(𝑒𝑖𝜃)𝜙
∗ (𝑧𝑛) = 𝑇∑𝑚

𝑗=0 𝑎𝑗𝑒−𝑖𝑗𝜃𝜙(𝑧𝑛) 

 = ∑𝑚
𝑗=0 𝑇𝑎𝑗𝑒−𝑖𝑗𝜃𝜙(𝑧𝑛)    𝑏𝑦 𝐿𝑒𝑚𝑚𝑎 ? ?. 

  

 = {
∑𝑛

𝑗=0 2𝑎𝑗(𝑛 − 𝑗 + 1)𝜙̂(2𝑛 − 𝑗 + 2)𝑧𝑛−𝑗 𝑖𝑓 𝑛 < 𝑚,

∑𝑚
𝑗=0 2𝑎𝑗(𝑛 − 𝑗 + 1)𝜙̂(2𝑛 − 𝑗 + 2)𝑧𝑛−𝑗 𝑖𝑓 𝑛 ≥ 𝑚.

 

The following theorem gives us an important results about the product of two poly-

quasihomogenous Toeplitz operators.  

Theorem 3.3 Let 𝛹1 and 𝛹2 be two non-zero bounded poly-quasihomogenous functions of 

degrees 𝑚 and 𝑠 respectively. If there exists a function 𝛹3 such that 𝑇𝛹1
𝑇𝛹2

= 𝑇𝛹3
, then 𝛹3 

is a sum of at most (𝑚 + 𝑠) quasihomogenous functions, and the highest degree of them is 

(𝑚 + 𝑠).  

Proof. Assume  

 Ψ1 = 𝑓(𝑒𝑖𝜃)𝜙1      𝑎𝑛𝑑     Ψ2 = 𝑔(𝑒𝑖𝜃)𝜙2, 

where𝜙1 and 𝜙2 are radial functions, and 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃 and 𝑔(𝑒𝑖𝜃) = ∑𝑠

𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃 . 

Now, by Lemma 3, we have ∀𝑛 ≥ 0 

𝑇Ψ1
𝑇Ψ2

(𝑧𝑛) = 𝑇∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃𝜙1

𝑇∑𝑠
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃𝜙2

(𝑧𝑛)               = 𝑇∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃𝜙1

(∑𝑠
𝑗=0 2 𝑏𝑗(𝑛 +

𝑗 + 1)𝜙2̂(2𝑛 + 𝑗 + 2) 𝑧𝑛+𝑗)               = ∑𝑠
𝑗=0 2 𝑏𝑗(𝑛 + 𝑗 + 1)𝜙2̂(2𝑛 + 𝑗 +

2)𝑇∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃𝜙1

(𝑧𝑛+𝑗)                     = ∑𝑠
𝑗=0 2 𝑏𝑗(𝑛 + 𝑗 + 1)𝜙2̂(2𝑛 + 𝑗 + 2). ∑𝑚

𝑝=0 2𝑎𝑝(𝑛 +
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𝑗 + 𝑝 + 1)𝜙1̂(2𝑛 + 2𝑗 + 𝑝 + 2)𝑧𝑛+𝑗+𝑝                     = ∑𝑠
𝑗=0 ∑𝑚

𝑝=0 4𝑎𝑝(𝑛 + 𝑗 + 𝑝 +

1)𝑏𝑗(𝑛 + 𝑗 + 1)𝜙2̂(2𝑛 + 𝑗 + 2)𝜙1̂(2𝑛 + 2𝑗 + 𝑝 + 2)𝑧𝑛+𝑗+𝑝.  

Now, if we denote 𝜆𝑛,𝑝,𝑗 = 4𝑎𝑝(𝑛 + 𝑗 + 𝑝 + 1)𝑏𝑗(𝑛 + 𝑗 + 1)𝜙2̂(2𝑛 + 𝑗 + 2)𝜙1̂(2𝑛 + 2𝑗 +

𝑝 + 2). Then we get  

 𝑇Ψ1
𝑇Ψ2

(𝑧𝑛) = ∑𝑠
𝑗=0 ∑𝑚

𝑝=0 𝜆𝑛,𝑝,𝑗𝑧𝑛+𝑗+𝑝. 

By Theorem 2.2, for all 𝑗, 𝑝, 𝜆𝑛,𝑝,𝑗𝑧𝑛+𝑗+𝑝 = 𝑇ℎ𝑝,𝑗
, where ℎ𝑝,𝑗 is a quasihomogenous 

functions of degree 𝑝 + 𝑗. Therefore,  

 𝑇Ψ1
𝑇Ψ2

= ∑𝑗,𝑝 𝑇ℎ𝑝,𝑗
= 𝑇∑𝑝,𝑗 ℎ𝑝,𝑗

= 𝑇Ψ3
, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑗 ≤ 𝑠, 𝑎𝑛𝑑 0 ≤ 𝑝 ≤ 𝑚. 

Hence Ψ3 is a sum of (𝑚 + 𝑠) quasihomogenous Toeplitz operators. Moreover, the highest 

degree of them is (𝑚 + 𝑠).  

Remark 3.4 The above theorem is true if we replace 𝛹1 and 𝛹2 by there conjugates, we can 

prove them by using the adjoint operator.  

The following theorem states that the only idempotent poly-quasihomogenous different than 

the identity poly quasi ( where the identity poly-quasihomogenous is 𝑇1) is the zero poly-

quasihomogenous.  

Theorem 3.5 Let 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃 be a polynomial function of 𝑒𝑖𝜃 of degree 𝑚 > 0 

and 𝜙 is a bounded radial function. If 𝑇
𝑓(𝑒𝑖𝜃)𝜙
2 = 𝑇𝑓(𝑒𝑖𝜃)𝜙, then 𝜙 = 0.  

Proof. By Lemma , we have ∀𝑛 ≥ 0 

                   𝑇𝑓(𝑒𝑖𝜃)𝜙(𝑧𝑛) = ∑
𝑚

𝑗=0
2 𝑎𝑗(𝑛 + 𝑗 + 1)𝜙̂(2𝑛 + 𝑗 + 2) 𝑧𝑛+𝑗, 

and 

𝑇
𝑓(𝑒𝑖𝜃)𝜙
2 (𝑧𝑛) = ∑

𝑚

𝑗=0
4 𝑎𝑗

2 (𝑛 + 𝑗 + 1)(𝑛 + 2𝑗 + 1)𝜙̂(2𝑛 + 𝑗 + 2)𝜙̂(2𝑛 + 3𝑗 + 2) 𝑧𝑛+2𝑗. 

Since 𝑇
𝑓(𝑒𝑖𝜃)𝜙
2 = 𝑇𝑓(𝑒𝑖𝜃)𝜙, then we have  

 ∑𝑚
𝑗=0 2 𝑎𝑗(𝑛 + 𝑗 + 1)𝜙̂(2𝑛 + 𝑗 + 2) 𝑧𝑛+𝑗 = ∑𝑚

𝑗=0 4 𝑎𝑗
2 (𝑛 + 𝑗 + 1)(𝑛 + 2𝑗 + 1)𝜙̂(2𝑛 +

𝑗 + 2)𝜙̂(2𝑛 + 3𝑗 + 2) 𝑧𝑛+2𝑗 (3.1) 

 In the above equation, the highest degree of 𝑧 on the right hand side is 𝑛 + 2𝑚, however the 

coefficient of 𝑧𝑛+2𝑚 is zero on the left hand side. This implies that  

 𝜙̂(2𝑛 + 𝑚 + 2)𝜙̂(2𝑛 + 3𝑚 + 2) = 0. 

Then, either 𝜙̂(2𝑛 + 𝑚 + 2) = 0 or 𝜙̂(2𝑛 + 3𝑚 + 2) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0, but ∑𝑛∈ ℕ
1

2𝑛+1
=

∞. Therefore, by Remark 2.4, 𝜙 = 0.  

 The following states that a Toeplitz operator with bounded radial symbol commutes with a 

poly-quasihomogenous Toeplitz operator only in the trivial case.  
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Theorem 3.6 Let 𝜙1 and 𝜙2 be two bounded radial functions, and 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃 a 

polynomial in 𝑒𝑖𝜃 of degree 𝑚. If 𝑇𝜙1
 commutes with 𝑇𝑓(𝑒𝑖𝜃)𝜙2

, then 𝜙2 = 0 or 𝜙1 is 

constant.  

Proof. Since 𝑇𝜙1
 commutes with 𝑇𝑓(𝑒𝑖𝜃)𝜙2

, then ∀𝑛 ≥ 0 we have  

 𝑇𝜙1
𝑇∑𝑚

𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃𝜙2
(𝑧𝑛) = 𝑇∑𝑚

𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃𝜙2
𝑇𝜙1

(𝑧𝑛). 

On the left side of the above equation, the monomial in 𝑧 of the highest degree is 𝑧𝑛+𝑚, and 

it comes only from 𝑇𝜙1
𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙2

(𝑧𝑛). On the other hand, the monomial in 𝑧 with highest 

degree on the right side of the above equation, also is 𝑧𝑛+𝑚 and it comes from 

𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙2
𝑇𝜙1

(𝑧𝑛) only. Therefore, ∀𝑛 ≥ 0  

 𝑇𝜙1
𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙2

(𝑧𝑛) = 𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙2
𝑇𝜙1

(𝑧𝑛), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ≥ 0. (3.2) 

According to Theorem 2.5, equation (3.2) implies that 𝜙2 = 0 or 𝜙1 is constant.  

Remark 3.7 In the above theorem, if 𝑇𝜙1
 commutes with 𝑇

𝑓(𝑒𝑖𝜃)𝜙2
, then we have the same 

conclusion i.e. 𝜙2 = 0 or 𝜙1 is constant.  

 The following theorem states that poly-quasihomogenous Toeplitz operator and adjoint of 

the poly-quasihomogenous Toeplitz operator commute only in the trivial case.  

Theorem 3.8 Let 𝜙1 and 𝜙2 be two bounded radial functions, and 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃 

and 𝑔(𝑒𝑖𝜃) = ∑𝑠
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃 be two polynomials in 𝑒𝑖𝜃 of degrees 𝑚 and 𝑠 respectively, where 

𝑚 ≥ 𝑠 ≥ 0 . If  

 𝑇𝑓(𝑒𝑖𝜃)𝜙1
𝑇

𝑔(𝑒𝑖𝜃)𝜙2

∗ = 𝑇
𝑔(𝑒𝑖𝜃)𝜙2

∗ 𝑇𝑓(𝑒𝑖𝜃)𝜙1
, 

then 𝜙1 = 0 or 𝜙2 = 0.  

  

Proof. Note that 𝑇
𝑔(𝑒𝑖𝜃)𝜙2

∗ = 𝑇
𝑔(𝑒𝑖𝜃)𝜙2

  

If 𝑇𝑓(𝑒𝑖𝜃)𝜙1
= 𝑇∑𝑚

𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃𝜙1
 commutes with 𝑇

𝑔(𝑒𝑖𝜃)𝜙2
= 𝑇∑𝑠

𝑗=0 𝑏𝑗𝑒−𝑖𝑗𝜃𝜙2
, then ∀𝑛 ≥ 0,  

 𝑇∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃𝜙1

𝑇∑𝑠
𝑗=0 𝑏𝑗𝑒−𝑖𝑗𝜃𝜙2

(𝑧𝑛) = 𝑇∑𝑠
𝑗=0 𝑏𝑗𝑒−𝑖𝑗𝜃𝜙2

𝑇∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃𝜙1

(𝑧𝑛). 

Now the terms in 𝑧 of degree (𝑛 − 𝑠 + 𝑚), on both left and right sides of the above 

equation, come only from 𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1
𝑇𝑏𝑠𝑒−𝑖𝑠𝜃𝜙2

, and 𝑇𝑏𝑠𝑒−𝑖𝑠𝜃𝜙2
𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1

 respectively. This 

implies that  

 𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1
𝑇𝑏𝑠𝑒−𝑖𝑠𝜃𝜙2

= 𝑇𝑏𝑠𝑒−𝑖𝑠𝜃𝜙2
𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1

. 

By Theorem 2.6, the above equation implies 𝜙1 = 0 or 𝜙2 = 0.  

Theorem 3.9 Let 𝜙1,and  𝜙2 be bounded radial functions, and 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃 and 

𝑔(𝑒𝑖𝜃) = ∑𝑠
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃 be polynomials in 𝑒𝑖𝜃 of degrees 𝑚 and 𝑠 respectively. If 𝑇𝑒𝑖𝑝𝜃𝜙1
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commutes with 𝑇
(𝑓(𝑒𝑖𝜃)+𝑔(𝑒𝑖𝜃))𝜙2

, then 𝜙1 = 0 or 𝜙2 = 0.  

Proof. If 𝑝 > 0, then we have ∀𝑛 ≥ 0  

 𝑇𝑒𝑖𝑝𝜃𝜙1
𝑇

(𝑓(𝑒𝑖𝜃)+𝑔(𝑒𝑖𝜃))𝜙2
(𝑧𝑛) = 𝑇

(𝑓(𝑒𝑖𝜃)+𝑔(𝑒𝑖𝜃))𝜙2
𝑇𝑒𝑖𝑝𝜃𝜙1

(𝑧𝑛). 

In the above equation the monomial in 𝑧 of the smallest degree is 𝑧𝑛+𝑝−𝑠 on both sides, 

Therefore,  

 𝑇𝑒𝑖𝑝𝜃𝜙1
𝑇𝑏𝑠𝑒−𝑖𝑠𝜃𝜙2

= 𝑇𝑏𝑠𝑒−𝑖𝑠𝜃𝜙2
𝑇𝑒𝑖𝑝𝜃𝜙1

. 

Then directly, by Theorem 2.6 , 𝜙1 = 0 or 𝜙2 = 0. 

If 𝑝 < 0, then we can prove the same result by using the term of the highest degree in 𝑧 is 

𝑧𝑛+𝑚+𝑝.  

 The following theorem shows the uniqueness of the commutant of poly-quasihomogenous 

Toeplitz operator.  

Theorem 3.10  Let 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃 and 𝑔(𝑒𝑖𝜃) = ∑𝑠

𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃 be two polynomials in 

𝑒𝑖𝜃 of degrees 𝑚 > 0 and 𝑠 > 0 respectively, and 𝜙1 ≠ 0 bounded radial function. If there 

exists a bounded radial function 𝜙2 not identically zero, such that  

 𝑇𝑓(𝑒𝑖𝜃)𝜙1
𝑇𝑔(𝑒𝑖𝜃)𝜙2

= 𝑇𝑔(𝑒𝑖𝜃)𝜙2
𝑇𝑓(𝑒𝑖𝜃)𝜙1

, 

then 𝜙2 is unique up to a constant factor.  

  

Proof. If 𝑇∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃𝜙1

 commutes with 𝑇∑𝑠
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃𝜙2

, then ∀𝑛 ≥ 0  

 𝑇∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃𝜙1

𝑇∑𝑠
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃𝜙2

(𝑧𝑛) = 𝑇∑𝑠
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃𝜙2

𝑇∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃𝜙1

(𝑧𝑛). 

On the left side of the above equation, the monomial in 𝑧 of highest degree is 𝑧𝑛+𝑠+𝑚, and it 

comes only from 𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1
𝑇𝑏𝑠𝑒𝑖𝑠𝜃𝜙2

, and on the right side the monomial of highest degree 

in 𝑧 is also 𝑧𝑛+𝑠+𝑚, and it comes from the product 𝑇𝑏𝑠𝑒𝑖𝑠𝜃𝜙2
𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1

. Therefore,  

 𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1
𝑇𝑏𝑠𝑒𝑖𝑠𝜃𝜙2

= 𝑇𝑏𝑠𝑒𝑖𝑠𝜃𝜙2
𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1

. 

By Theorem 2.7, the above equation implies that 𝜙2 is unique up to a constant factor.  

Remark 3.11 If 𝑇
𝑓(𝑒𝑖𝜃)𝜙1

 commutes with 𝑇
𝑔(𝑒𝑖𝜃)𝜙2

, then 𝜙2 is unique up to a constant 

factor, we can prove it by using the adjoint operator.  

Corollary 3.12 Let 𝜙1 and 𝜙2 be two radial functions, and 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃 and 

𝑔(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃 be two polynomials in 𝑒𝑖𝜃 of degree 𝑚 > 0. If 𝑇𝑓(𝑒𝑖𝜃)𝜙1

 commutes 

with 𝑇𝑔(𝑒𝑖𝜃)𝜙2
, then 𝜙2 = 𝑐𝜙1.  

  

Proof. We know each Toeplitz operator commutes with itself, therefore 𝑇𝑓(𝑒𝑖𝜃)𝜙1
 commutes 
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with itself. And since  

 𝑇𝑓(𝑒𝑖𝜃)𝜙1
𝑇𝑔(𝑒𝑖𝜃)𝜙2

= 𝑇𝑔(𝑒𝑖𝜃)𝜙2
𝑇𝑓(𝑒𝑖𝜃)𝜙1

, 

then, by theorem 3.10, there exists a constant 𝑐 such that 𝜙2 = 𝑐𝜙1.  

Remark 3.13 The above theorem is true if we replace 𝑓(𝑒𝑖𝜃) and 𝑔(𝑒𝑖𝜃) by there 

conjugates, we can prove it by the adjoint operator.  

Theorem 3.14 Let 𝜙1 and 𝜙2 be two bounded radials, and 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃 

polynomial in 𝑒𝑖𝜃 of degree 𝑚. Then 𝑇𝑒𝑖𝑝𝜃𝜙1
 commutes with 𝑇𝑓(𝑒𝑖𝜃)𝜙2

 if and only if 𝑇𝑒𝑖𝑝𝜃𝜙1
 

commutes with 𝑇𝑎𝑗𝑒𝑖𝑗𝜃𝜙2
 for all 0 ≤ 𝑗 ≤ 𝑚. Moreover if 𝑝 < 𝑚 and 𝑎𝑝 ≠ 0, then there exist 

𝑐 ∈ ℂ such that 𝜙2 = 𝑐𝜙1  

Proof. Since 𝑓(𝑒𝑖𝜃)𝜙2 = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃𝜙2, then directly by Theorem 2.8 𝑇𝑒𝑖𝑝𝜃𝜙1

 commutes 

with 𝑇𝑓(𝑒𝑖𝜃)𝜙2
 if and only if 𝑇𝑒𝑖𝑝𝜃𝜙1

 commutes with 𝑇𝑎𝑗𝑒𝑖𝑗𝜃𝜙2
 for all 0 ≤ 𝑗 ≤ 𝑚. 

If 𝑝 < 𝑚 and 𝑎𝑝 ≠ 0, then, by the above, 𝑇𝑒𝑖𝑝𝜃𝜙1
 commutes with 𝑇𝑎𝑝𝑒𝑖𝑝𝜃𝜙2

. 

But the commutant of 𝑇𝑎𝑝𝑒𝑖𝑝𝜃𝜙2
 is unique, so by Theorem 2.7, 𝜙1 = 𝑐𝜙2.  

Remark 3.15 By theorem 2.9, we can see that 𝑇𝑎𝑝𝑒𝑖𝑝𝜃𝜙2
 commutes with 𝑇𝑎𝑙𝑒𝑖𝑙𝜃𝜙2

, for all 

0 < 𝑙, 𝑝 ≤ 𝑚.  

Corollary 3.16 If 𝑇𝑒𝑖𝑝𝜃𝜙1
 commutes with 𝑇𝜓, where 𝜓(𝑧) = ∑∞

−∞ 𝑒𝑖𝑘𝜃𝜓𝑘, then   

    (a) 𝑇𝑒𝑖𝑘𝜃𝜓𝑘
 commutes with 𝑇𝑒𝑖𝑝𝜃𝜙1

, for all 𝑘 ∈ ℤ.  

    (b) 𝑇𝑒𝑖𝑘𝜃𝜓𝑘
 commutes with 𝑇𝑒𝑖𝑚𝜃𝜓𝑚

, for all 𝑚, 𝑘 ∈ ℤ.  

    (b) If 𝜓𝑝 ≠ 0, then there exist 𝑐 ∈ ℂ such that 𝜙1 = 𝑐𝜓𝑝.  

Theorem 3.17 Let 𝜙1 and 𝜙2 be two radial functions, and 𝑓(𝑒𝑖𝜃) = ∑𝑚
𝑝=0 𝑎𝑝𝑒𝑖𝑝𝜃 and 

𝑔(𝑒𝑖𝜃) = ∑𝑠
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃 be two polynomials in 𝑒𝑖𝜃 of degrees 𝑚 and 𝑠 respectively. If 

𝑇𝑓(𝑒𝑖𝜃)𝜙1
𝑇𝑔(𝑒𝑖𝜃)𝜙2

= 0, then 𝜙1 = 0 or 𝜙2 = 0.  

Proof. Since 𝑇𝑓(𝑒𝑖𝜃)𝜙1
𝑇𝑔(𝑒𝑖𝜃)𝜙2

= 0, then ∀𝑛 ≥ 0 𝑇𝑓(𝑒𝑖𝜃)𝜙1
𝑇𝑔(𝑒𝑖𝜃)𝜙2

(𝑧𝑛) = 0. 

By Lemma 3 

𝑇𝑓(𝑒𝑖𝜃)𝜙1
𝑇𝑔(𝑒𝑖𝜃)𝜙2

(𝑧𝑛)

= ∑
𝑠

𝑗=0
∑

𝑚

𝑝=0
4𝑎𝑝(𝑛 + 𝑗 + 𝑝 + 1)𝑏𝑗(𝑛 + 𝑗 + 1)𝜙2̂(2𝑛 + 𝑗 + 2)𝜙1̂(2𝑛

+ 2𝑗 + 𝑝 + 2)𝑧𝑛+𝑗+𝑝 

this is polynomial in 𝑧 of degree (𝑛 + 𝑚 + 𝑠) and equal zero for all 𝑧 ∈ 𝔻, this implies that 

the coefficients are all zeros. Therefore, ∀ 𝑛 ≥ 1 the coefficient of the highest degree of 𝑧 is  
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 4𝑎𝑚(𝑛 + 𝑠 + 𝑚 + 1)𝑏𝑠(𝑛 + 𝑠 + 1)𝜙2̂(2𝑛 + 𝑠 + 2)𝜙1̂(2𝑛 + 2𝑠 + 𝑚 + 2) = 0, 

This implies that ∀𝑛 ≥ 0  

 𝜙2̂(2𝑛 + 𝑠 + 2) = 0    𝑜𝑟    𝜙1̂(2𝑛 + 2𝑠 + 𝑚 + 2) = 0. 

Now, let 𝐵1 = {𝑛: 𝜙1̂(2𝑛 + 2𝑠 + 𝑚 + 2) = 0} and 𝐵2 = {𝑛: 𝜙2̂(2𝑛 + 𝑠 + 2) = 0}. 

It is clear  

 ∑𝑛∈ ℕ
1

2𝑛+1
= ∞. 

Since  

 ∑𝑛∈ ℕ
1

2𝑛+1
≤ ∑𝑛∈ 𝐵1

1

2𝑛+1
+ ∑𝑛∈ 𝐵2

1

2𝑛+1
. 

at least one of the series ∑𝑛∈ 𝐵1

1

2𝑛+1
 or ∑𝑛∈ 𝐵2

1

2𝑛+1
 diverges, and so by Remark 2.4 𝜙1 = 0 

or 𝜙2 = 0.  

Theorem 3.18 Let 𝜙1, and  𝜙2 be bounded radial functions, and 𝑓1(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃, 

𝑓2(𝑒𝑖𝜃) = ∑𝑚
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃, 𝑔1(𝑒𝑖𝜃) = ∑𝑠

𝑗=0 𝑐𝑗𝑒𝑖𝑗𝜃 and 𝑔2(𝑒𝑖𝜃) = ∑𝑝
𝑗=0 𝑑𝑗𝑒𝑖𝑗𝜃 polynomials in 

𝑒𝑖𝜃 of degrees 𝑚, 𝑚, 𝑠 and 𝑝 respectively, where 𝑚 > 𝑠 > 0 and 𝑚 > 𝑝 > 0. If 

(𝑇𝑓1(𝑒𝑖𝜃)𝜙1
+ 𝑇𝑔1(𝑒𝑖𝜃)𝜙2

) commutes with (𝑇𝑓2(𝑒𝑖𝜃)𝜙2
+ 𝑇𝑔2(𝑒𝑖𝜃)𝜙1

), then ∃ 𝑐 ∈ ℂ such that 

𝜙2 = 𝑐𝜙1.  

Proof. Since (𝑇𝑓1(𝑒𝑖𝜃)𝜙1
+ 𝑇𝑔1(𝑒𝑖𝜃)𝜙2

) commutes with (𝑇𝑓2(𝑒𝑖𝜃)𝜙2
+ 𝑇𝑔2(𝑒𝑖𝜃)𝜙1

), then ∀𝑛 ≥

0  

 (𝑇𝑓1(𝑒𝑖𝜃)𝜙1
+ 𝑇𝑔1(𝑒𝑖𝜃)𝜙2

)(𝑇𝑓2(𝑒𝑖𝜃)𝜙2
+ 𝑇𝑔2(𝑒𝑖𝜃)𝜙1

)(𝑧𝑛) = (𝑇𝑓2(𝑒𝑖𝜃)𝜙2
+

𝑇𝑔2(𝑒𝑖𝜃)𝜙1
)(𝑇𝑓1(𝑒𝑖𝜃)𝜙1

+ 𝑇𝑔1(𝑒𝑖𝜃)𝜙2
)(𝑧𝑛) 

In the above equation the monomial of z of the highest degree is 𝑧𝑛+2𝑚 on both sides, 

Therefore,  

 𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1
𝑇𝑏𝑚𝑒𝑖𝑚𝜃𝜙2

= 𝑇𝑏𝑚𝑒𝑖𝑚𝜃𝜙2
𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1

. 

Then directly, by Theorem 2.7,then ∃ 𝑐 ∈ ℂ such that 𝜙2 = 𝑐𝜙1.  

Remark 3.19 The above theorem is true, if we replace 𝑓1(𝑒𝑖𝜃) and 𝑓2(𝑒𝑖𝜃) by there 

conjugates. 

Theorem 3.20 Let 𝜙1, 𝜙2, 𝜓1, and  𝜓2 be bounded radial functions, and 𝑓1(𝑒𝑖𝜃) =
∑𝑚

𝑗=0 𝑎𝑗𝑒𝑖𝑗𝜃, 𝑓2(𝑒𝑖𝜃) = ∑𝑠
𝑗=0 𝑏𝑗𝑒𝑖𝑗𝜃 polynomials in 𝑒𝑖𝜃 of degree 𝑚 and 𝑔1(𝑒𝑖𝜃) =

∑𝑠
𝑗=0 𝑐𝑗𝑒𝑖𝑗𝜃 𝑔2(𝑒𝑖𝜃) = ∑𝑝

𝑗=0 𝑑𝑗𝑒𝑖𝑗𝜃 polynomials in 𝑒𝑖𝜃 of degree 𝑠, where 𝑠 < 𝑚. If 

(𝑇𝑓1(𝑒𝑖𝜃)𝜙1
+ 𝑇𝑔1(𝑒𝑖𝜃)𝜙2

) commutes with (𝑇𝑓2(𝑒𝑖𝜃)𝜓1
+ 𝑇𝑔2(𝑒𝑖𝜃)𝜓2

), then 𝜓1 = 𝑐1𝜙1 and 

𝜓2 = 𝑐2𝜙2.  

Proof. Since (𝑇𝑓1(𝑒𝑖𝜃)𝜙1
+ 𝑇𝑔1(𝑒𝑖𝜃)𝜙2

) commutes with (𝑇𝑓2(𝑒𝑖𝜃)𝜙2
+ 𝑇𝑔2(𝑒𝑖𝜃)𝜙1

), then ∀𝑛 ≥

0  
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 (𝑇𝑓1(𝑒𝑖𝜃)𝜙1
+ 𝑇𝑔1(𝑒𝑖𝜃)𝜙2

)(𝑇𝑓2(𝑒𝑖𝜃)𝜓1
+ 𝑇𝑔2(𝑒𝑖𝜃)𝜓2

)(𝑧𝑛) = (𝑇𝑓2(𝑒𝑖𝜃)𝜓1
+

𝑇𝑔2(𝑒𝑖𝜃)𝜓2
)(𝑇𝑓1(𝑒𝑖𝜃)𝜙1

+ 𝑇𝑔1(𝑒𝑖𝜃)𝜙2
)(𝑧𝑛) (3.3) 

 In the above equation the monomial in 𝑧 of the highest degree is 𝑧𝑛+2𝑚 on both sides, 

Therefore,  

 𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜙1
𝑇𝑏𝑚𝑒𝑖𝑚𝜃𝜓1

= 𝑇𝑏𝑚𝑒𝑖𝑚𝜃𝜙1
𝑇𝑎𝑚𝑒𝑖𝑚𝜃𝜓1

. 

Then directly, by Theorem 2.7, ∃ 𝑐1  ∈ ℂ such that 𝜓1 = 𝑐1𝜙1. 

On the other hand, the terms in 𝑧 of degree 𝑛 + 2𝑠, on both left and right sides of (3.3), come 

from only 𝑇𝑎𝑠𝑒𝑖𝑠𝜃𝜙1
𝑇𝑏𝑠𝑒𝑖𝑠𝜃𝜓1

(𝑧𝑛) + 𝑇𝑐𝑠𝑒𝑖𝑠𝜃𝜙2
𝑇𝑑𝑠𝑒𝑖𝑠𝜃𝜓2

(𝑧𝑛) and 𝑇𝑏𝑠𝑒𝑖𝑠𝜃𝜓1
𝑇𝑎𝑠𝑒𝑖𝑠𝜃𝜙1

(𝑧𝑛) +

𝑇𝑑𝑠𝑒𝑖𝑠𝜃𝜓2
𝑇𝑐𝑠𝑒𝑖𝑠𝜃𝜙2

(𝑧𝑛) respectively. 

But 𝜓1 = 𝑐1𝜙1, so  

 𝑇𝑐𝑠𝑒𝑖𝑠𝜃𝜙2
𝑇𝑑𝑠𝑒𝑖𝑠𝜃𝜓2

(𝑧𝑛) = 𝑇𝑑𝑠𝑒𝑖𝑠𝜃𝜓2
𝑇𝑐𝑠𝑒𝑖𝑠𝜃𝜙2

(𝑧𝑛). 

Then directly, by Theorem 2.7, ∃ 𝑐2  ∈ ℂ such that 𝜓2 = 𝑐2𝜙2. 

Remark 3.21 The above theorem is true, if we replace 𝑓1(𝑒𝑖𝜃), 𝑓2(𝑒𝑖𝜃), 𝑔1(𝑒𝑖𝜃) and 

𝑔2(𝑒𝑖𝜃) by there conjugates.  
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