
Nanotechnology Perceptions  
ISSN 1660-6795 

www.nano-ntp.com 

 

Nanotechnology Perceptions 20 No. S4 (2024) 555–567                                                

DNN-Sparse Bayesian Learning (SBL) based 

Sparse Signal Recovery in Compressed 

Sensing 

Dr.G. R. Venkatakrishnan1, Dr.T. Padmapriya2, Dr.M.Anand3, Sabari 

L Uma Maheswari4, K. Kiruthika5 
 

1Associate Professor, Sri SivasubramaniyaNadar College of Engineering,   

Kalavakkam – 603110, Chennai,India, venkatakrishnangr@ssn.edu.in 
2Managing Director, Melange Publications, Puducherry, India,padmapriyaa85@pec.edu 

3Professor, Department of ECE, DR M.G.R Educational and Research Institute, 

India, anand.ece@drmgrdu.ac.in 

4Assistant Professor, R.M.K Engineering College, Tamilnadu, India, slu.eee@rmkec.ac.in 
5Assistant Professor,Department of CSBS, Panimalar Engineering College,Chennai, India, 

kkiruthika.csbs@panimalar.ac.in  

   

 
This research investigates the integration of Deep Neural Networks (DNNs) with the Sparse 

Bayesian Learning (SBL) technique for sparse signal recovery in compressed sensing 

applications. Sparse signal recovery is a critical task in scenarios where signals are sampled at 

rates below the Nyquist limit aiming to accurately reconstruct the original signal from limited 

measurements. By combining the representation learning capabilities of DNNs with the 

probabilistic modeling approach of SBL, we propose a novel framework for robust and efficient 

sparse signal recovery. Our approach leverages the inherent sparsity and structure of signals to 

enhance reconstruction accuracy while minimizing data requirements. Through extensive 

experimentation and evaluation, we assess the performance of the proposed DNN-SBL 

framework in terms of reconstruction accuracy, computational efficiency, and robustness to noise 

and signal variations. The results demonstrate the effectiveness of the combined approach in 

achieving superior sparse signal recovery compared to traditional methods. This research 

contributes to advancing the field of compressed sensing by offering innovative solutions that 

have potential applications in various domains such as medical imaging, communication systems, 

and sensor networks. 
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1. Introduction 

Sparse signal recovery in compressed sensing is a crucial area within signal processing with 

profound implications across various domains such as image processing, communication 

systems, and medical imaging. This research endeavors to explore a novel approach inspired 
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by Deep Neural Networks (DNNs) and SparseBayesianLearning (SBL)for enhancing sparse 

signal recovery efficiency in compressed sensing scenarios.  

Compressed sensing, a groundbreaking idea in signal processing [1], seeks to reconstruct 

sparse signals with far fewer samples than typically needed, thus enabling more efficient 

data acquisition and transmission. However, achieving high-fidelity signal recovery under 

stringent sampling constraints remains a formidable challenge. Traditional methods such as 

basis pursuit (BP), lasso, and greedy, algorithms have shown promising results but often 

struggle with computationalcomplexity and suboptimal performance, especially in scenarios 

with high-dimensional data or severe undersampling [2]. 

Deep Neural Networks (DNNs) are advanced computational models inspired by the structure 

of the human brain [3]. They consist of interconnected layers of artificial neurons enabling 

them to learn complex patterns from data. DNNs have revolutionized various fields 

including computer vision, natural language processing, and speech recognition, by 

achieving remarkable performance in tasks such as image classification, language 

translation, and voice synthesis [4]. Despite their computational demands, DNNs continue to 

drive innovation, powering breakthroughs in artificial intelligence and shaping the landscape 

of machine learning applications in, fields ranging from healthcare to finance and beyond. 

Sparse Bayesian Learning (SBL) is a statistical technique used for estimating sparse 

representations of data. Itleverages Bayesian inference to model signal sparsity and 

uncertainty assuming that the underlying signal of interest can be represented sparsely on a 

suitable basis. SBL provides a principled frameworkfor estimating sparse representations 

from noisy or incomplete data offering a probabilisticinterpretation of the estimatedsparse 

coefficients. By incorporating prior knowledge about signal sparsity and uncertainty in 

observations, SBLfacilitates robust and interpretable estimation of sparse representations. 

This makes it a valuable tool in various domains including signal processing, computer 

vision, and data analysis [5]. 

Deep Neural Networks have emerged as powerful tools for solving complex signal 

processing tasksby learning hierarchical representations from data. Inspired by their success, 

integrating DNN principles into compressed sensing frameworks presents apromising avenue 

for addressing its inherent challenges. Meanwhile, SparseBayesian Learning offers a 

principled approach for modeling signal sparsity and uncertainty, leveraging Bayesian 

inference to estimate sparse signal representations from noisy observations. By 

amalgamating the strengths of DNNs and SBL, this research aims to devise a robust and 

efficient sparse signal recovery framework capable of handling various challenges posed by 

compressed sensing applications [6,7]. 

The proposed approach leverages the expressive power of DNNs to learn intricate mappings 

between compressed measurements and sparse signal representations. Through end-to-end 

training, the network learns to exploit inherent signal structures and statistical dependencies, 

facilitating enhanced signal recovery even from highly undersampled measurements. 

Moreover, by incorporating Bayesian inference principles inspired by SBL, the proposed 

framework provides a probabilistic interpretation of signal sparsity and uncertainty, enabling 

more reliable and robust signal reconstruction. By jointly optimizing network parameters and 

sparse signal representations, the proposed approach seeks to achieve superior performance 
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compared to conventional methods, particularly in scenarios with limited sampling resources 

or noisy observations. 

Theresearch methodology involves several key stages beginning with the formulation of the 

problem statement and theoretical underpinnings of compressed sensing, DNNs, and Sparse 

Bayesian Learning.Subsequently, the proposed framework architecture is 

designedcomprising interconnected layers of neural network modules augmented with 

Bayesian inference mechanisms. To train the model, appropriate loss functions and 

optimization algorithms tailored to the specific requirements of sparse signal recovery are 

employed. Extensive experiments are conducted using synthetic and real-world datasets to 

evaluate the proposed approach's performance in comparison to state-of-the-art methods. 

Evaluation metrics such as signal recovery accuracy, computational efficiency, and 

robustnessto noise and undersampling are meticulously analyzed to validate the efficacy of 

the proposed framework.Furthermore, the research investigates the interpretability and 

generalization capabilities of the proposed approach, shedding light on the learned signal 

representations and the underlying principles governing sparse signal recovery in 

compressed sensing [8]. Insights gained from these analyses contribute to a deeper 

understanding of the interplay between neural network architectures, Bayesian inference, and 

sparse signal recovery, thereby paving the way for future advancements in this field. 

In conclusion, this research endeavors to push the boundaries of sparse signal recovery in 

compressed sensing by integrating insights from Deep Neural Networks and Sparse Bayesian 

Learning. By harnessing the complementary strengths ofthese methodologies, the proposed 

approach aims to offer a robust, efficient, and interpretableframework for tackling the 

challenges posed by compressed sensing applications across various domains.Through 

rigorous theoretical analysis and empirical validation, this research seeks to make significant 

contributions to the advancement of signal processing techniques with far-reaching 

implications for diverse real-worldapplications. 

 

2. Literature Review  

[9] Described a novel technique for compressing convolutional neural networks using 

frequency pruning and compressive sensing, which resulted in lower compute and storage 

costs. Because of the inherent smoothness of parameters in image processing, translating the 

CNN's parameter matrix into the frequency domain using the Discrete Cosine Transform 

(DCT) yields a low-frequency dominated matrix. High-frequency components are 

subsequently removed in order to sparsify the frequency matrix. Next, the sparse frequency 

matrix is sampled with a distributed random Gaussian matrix. Finally, the network is 

retrained to fine-tune the remaining parameters, which are encoded as binary files using 

Huffman Coding. Experimental results on the YOLO network, a common network for object 

detection show that the suggested strategy outperforms two similar algorithms. 

[10] Synthesized sparse Bayesian learning and deep learning for System Identification 

(SYSID). They developed and assessed an iterative method for dynamic SYSID using 

datasets from three linear and two nonlinear dynamic processes. The Bayesian approach 

employed the Laplace approximation to estimate the model evidence or marginal likelihood. 

Structured sparsity regularization was incorporated into neural networks (NNs) through the 

imposition of group-sparsity inducing priors. Furthermore, they introduced an effective 



558 G. R. Venkatakrishnan  et al. DNN-Sparse Bayesian Learning (SBL)....          

Nanotechnology Perceptions Vol. 20 No. S4 (2024) 

method for computing the Hessian matrix for the recurrent layer by determining the block-

diagonal elements of the Hessian. 

[11] Presented the fundamental concepts of compressive sensing and conducted a 

comprehensive review of previous research across diverse application domains. By 

scrutinizing the functional aspects of compressive sensing frameworks, the study explored 

various opportunities within these domains. It extensively analyzed the core components of 

compressive sensing, including signal sparsity, subsampling, and reconstruction, aiming to 

fill critical research gaps identified in prior studies. Additionally, the research employed 

basic mathematical formulations to define key performance evaluation metrics applicable to 

bothone-dimensional and two-dimensional compressive sensing scenarios. 

Drawing inspiration from compressive sensing (CS) principles and recognizing the 

effectiveness of reduced sampling rates for accurate classification, [12] developed an 

adaptive CS-DL pipeline. This approach dynamically adapts the sampling rate based on 

input characteristics and employs a flexible deep learning (DL) model for classification. The 

results indicate comparable classification accuracy to uncompressed models while 

consuming up to 46% less battery energy. 

[13] Proposed an adapted sequential quadratic programming (SQP) method to address sparse 

signal recovery. Initially, they applied the established smoothed technique to create a smooth 

approximation of the objective function. Subsequently, they proposed a variant of the SQP 

method, integrating a novel approach for solving subproblems. They conducted a thorough 

investigation into the method's global convergence. Simulation outcomes showcased the 

promising performance of their proposed method when compared to various established 

algorithms. 

[14] Proposed a technique for acoustic Direction of Arrival (DOA) estimation using sparse 

signal recovery. They employed a shape parameter of q=1/2 in a hierarchical version of the 

generalized Gaussian prior. More specifically, they used l_(1/2) - norm priors to build a 

Sparse Bayesian Learning (SBL) framework that successfully captured the space sparsity 

properties of sound sources. The estimation accuracy of the suggested method was assessed 

for both acoustic DOA estimation and sparse signal recovery. Experimental findings 

revealed that their method achieved greater recovery accuracy and had the lowest root mean 

square error (RMSE)compared to state-of-the-art sparse signal recovery methods. 

 

3. Methodology 

This section describes the Deep Neural Network (DNN) inspired Sparse Bayesian 

Learningmethod for solving the sparse signal recovery problem. Figure 1 depicts the 

proposed system architecture of the DNN-SBL model for sparse signal recovery in 

compressed sensing. Sparse Signal Representation Module. 

This module takes the input signals and represents them in a sparse form. It condenses the 

signals into a set of factors where only a small number of coefficients are significantly non-

zero, while the majority are close to zero or exactly zero. This step exploits the inherent 

sparsity in the signals, which is crucial for efficient sparse signal recovery in compressed 

sensing. 
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DNN Module (Deep Neural Networks) 

The sparse representations obtained from the Sparse Signal Representation module are fed 

into the DNN module. This module consists of interconnected layers of artificial neurons, 

allowing it to learn complex mappings between the sparse representations and the 

measurements obtained through compressed sensing. Through end-to-end training, the DNN 

module learns to exploit the inherent signal structures and statistical dependencies, 

facilitating enhanced signal recovery even from highly undersampled measurements. 

SBL Module (Sparse Bayesian Learning) 

The output from the DNN module, which includes the learned sparse signal representations, 

is then passed to the SBL module. Here, Sparse Bayesian Learning techniques are employed 

to estimate the posterior distribution over the sparse signal space. This allows for the 

incorporation of prior knowledge about the sparsity structure of the signal and provides 

uncertainty estimates along with the recovered sparse signals. By leveraging Bayesian 

inference principles, the SBL module enables more reliable and robust signal reconstruction, 

especially in the presence of noise and signal variations. 
 
Evaluation Module 

Finally, the recovered sparse signals, along with their uncertainty estimates, are passed to the 

Evaluation module. This module computes various evaluation metrics to assess the 

performance of the proposed framework. Evaluation metrics such as Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and Peak Signal to Noise Ratio (PSNR) are 

calculated to measure the accuracy, fidelity, and robustness of the reconstructed signals. 

These metrics provide insights into the effectiveness of the DNN-SBL framework in sparse 

signal recovery tasks. 
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Fig. 1.Proposed System Architecture 

Overall, the proposed system architecture integrates Sparse Signal Representation, Deep 

Neural Networks, and Sparse Bayesian Learning techniques to achieve robust and efficient 

sparse signal recovery in compressed sensing applications. Through the combined use of 

these methodologies, the framework aims to address the challenges posed by signal sparsity, 

limited measurements, noise, and signal variations, ultimately leading to improved 

performance compared to traditional methods.In comparison to several well-known 

algorithms, simulation results demonstrate the promising performance of the proposed 

method. 

 

Sparsity 
Sparsity plays a crucial role in achieving precise signal reconstruction within compressed 

sensing (CS) setups. The concept of sparse signal representation involves condensing 1D 

signals, images, and videos into sets containing a minimal count of non-zero coefficients, 

thereby maintaining the integrity of the original information. Essentially, sparse 

representation seeks to transform the initial signal into a collection of basis coefficients 

featuring only a limited number of non-zero elements. 

Mathematically, the sparse coefficients of a signal 'x' in relation to the basis 'ψ' can be 

articulated as follows: 
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𝑥 = ∑ 𝜎𝑖𝜏𝑖 = 𝜎𝜏                             (1)

𝑁

𝑖=1

 

 

Where, σi represents a set of 'N' transformed coefficients in the basis τ. 

 

Sparse Signal Representation 

Sparse signal representation refers to the process of representing a signal in a concise form 

where only a small number of coefficients or components are significantly non-zero, while 

the majority are close to zero or exactly zero. This concept is fundamental in various signal 

processing tasks, including compressed sensing, where the goal is to efficiently acquire and 

reconstruct signals from limited measurements. 

In sparse signal representation, the signal is typically expressed as a linear combination of 

basis functions or atoms, where only a few coefficients corresponding to these basis 

functions are non-zero. Mathematically, if x represents the original signal and Φ represents 

the transformation matrix or dictionary containing the basis functions, the sparse 

representation z can be written as: 

𝑥 = 𝛷𝑧                                 (2) 

where z is a sparse vector, meaning it has only a small number of non-zero entries. 

The key idea behind sparse signal representation is that many real-world signals, such as 

images, audio, or biomedical signals, exhibit inherent sparsity in some domains. For 

example, in image processing, natural images can often be sparsely represented in the 

wavelet domain, where only a few wavelet coefficients capture the essential features of the 

image. 

Several mathematical tools and techniques are employed to achieve sparse signal 

representations effectively. These include: 

Basis Pursuit: It involves finding the sparsest representation of a signal under a given 

dictionary or set of basis functions. This problem is often formulated as an optimization task 

where the objective is to minimize the l1-norm of the coefficient vector subject to the 

constraint that the reconstructed signal matches the observed measurements. 

Dictionary Learning: In scenarios where the dictionary is not predefined, dictionary learning 

techniques are utilized to adaptively learn an overcomplete dictionary from the observed 

data. Sparse coding algorithms, such as K-SVD or dictionary learning via alternating 

minimization, are commonly employed for this purpose. 

Transform Coding: This approach involves transforming the signal into a domain where it 

becomes sparse, such as the wavelet, Fourier, or sparse domain, and then quantizing or 

thresholding the coefficients to achieve sparsity. 

Sparse signal representation plays a crucial role in various signal processing applications, 

including denoising, compression, feature extraction, and reconstruction. In the context of 

compressed sensing, exploiting the sparsity of signals enables efficient recovery from highly 

undersampled measurements, leading to significant advancements in data acquisition and 

reconstruction techniques. 
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Signal Sampling 

In the context of DNN-SBL based sparse signal recovery in compressed sensing, signal 

sampling is crucial for acquiring sparse signals efficiently. Let's explorethe role of signal 

sampling with the following equation: 

 

𝑦 = 𝛷𝑥 + 𝑒                                       (3) 

 

In compressed sensing, the acquired measurements y are obtained by linearly combining the 

original sparse signal x with a measurement matrix Φ. The noise term e represents any 

corruption or noise present in the acquired measurements. 

Selecting an appropriate measurement matrix Φ is essential for accurately reconstructing 

signals. A well-designed matrix can capture valuable information from the samples, 

contributing significantly to faithful signal reconstruction. Thus, the effectiveness of the 

sampling and recovery process greatly depends on the efficiency of the measurement matrix 

design. 

 

𝑥 = arg 𝑚𝑖𝑛𝑥ǁ𝑥ǁ0     |      ǁ 𝑦 − 𝛷𝑥ǁ 2 ≤∈          (4)  
 
The purpose of sparse signal recovery in compressed sensing is to rebuild the original sparse 

signal x from the obtained measurements y. This objective function minimizes the signal's 𝑙0 

-norm, promoting sparsity while adhering to a fidelity requirement that assures the 

reconstructed signal closely matches the measurements within a defined tolerance (ϵ). 

In DNN-SBL sparse signal recovery, deep neural networks (DNNs) are used to learn the 

mapping between collected measurements y and the original sparse signal x.  

 

𝑥 = arg 𝑚𝑎𝑥𝑥𝑝( 𝑥 ∣∣ 𝑦;  𝜃 )(5) 

This equation represents the posterior probability p(x∣y;θ), where θ denotes the parameters of 

the DNN. Sparse Bayesian Learning (SBL) techniques are employed to incorporate prior 

knowledge about the sparsity structure of the signal and estimate the posterior distribution 

over the sparse signal space. 
 

4. Results and Discussion 

The paper proposes a novel approach for sparse signal recovery in compressed sensing 

applications by integrating Deep Neural Networks (DNNs) with Sparse Bayesian Learning 

(SBL). This section discusses the results obtained from extensive experimentation and 

evaluation, as well as the implications of the proposed DNN-SBL framework.Enhanced 

Reconstruction Accuracy DNN-SBL leverages deep neural networks to learn intricate 

mappings between compressed measurements and sparse signal representations. Through 

end-to-end training, it exploits inherent signal structures and statistical dependencies, 

facilitating enhanced signal recovery even from highly undersampled measurements. 
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Traditional methods like BP, Lasso, and Greedy Algorithms may struggle to capture 

complex signal structures effectively. They often rely on heuristic approaches or 

optimization algorithms that may not fully exploit the underlying data characteristics. 

The evaluation metrics used in this paper to identify the efficiency of the proposed DNN-

SBL method are Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Peak 

Signal to Noise Ratio (PSNR). Figure 2 represents the comparison of the reconstruction 

accuracy of basis pursuit, Lasso, Greedy algorithm and CNN-SBL. The accuracy is plotted 

in terms of three evaluation metrics. The result shows that the proposed approach leverages 

the inherent sparsity and structure of signals to enhance reconstruction accuracy while 

minimizing data requirements. DNN inspired SBL approach achieves the least mean squared 

error, root mean squared error and the highest peak signal to noise ratio when compared to 

the traditional methods.  

The evaluation metrics are calculated using the given equations. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̃𝑖)2(6)

𝑛

𝑖=1
 

 

Where, n is the number of data points, 𝑦𝑖 is the actual value and  𝑦̃𝑖 represents the predicted 

value. A lower MSE of the proposed system indicates better accuracy, as it suggests that the 

predictions are closer to the actual values. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̃𝑖)2

𝑛

𝑖=1
               (7) 

 

Like MSE, a lower RMSE indicates better accuracy. The Peak Signal-to-Noise Ratio is 

represented as: 

 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                              (8) 

PSNR is typically expressed in decibels (dB), and it measures the ratio between the 

maximum possible power of a signal (represented by the maximum pixel value) and the 

power of corrupting noise (represented by the MSE) that affects the fidelity of its 

representation. Higher PSNR values indicate higher quality and lower levels of distortion in 

the reconstructed signal compared to the original signal. 
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Fig. 2. Reconstruction Accuracy 

 

Computational Efficiency: Despite the complexity of deep neural networks, DNN-SBL 

achieves computational efficiency by jointly optimizing network parameters and sparse 

signal representations. It learns to exploit signal structures and statistical dependencies 

efficiently. 

Traditional methods like BP may involve solving complex optimization problems, which can 

be computationally expensive, especially for large-scale problems. Lasso and Greedy 

Algorithms, while generally computationally efficient, may not fully exploit the rich 

representations learned by deep neural networks. 

Figure 3 demonstrates the overall computational efficiency of the proposed system compared 

with effective traditional methods. The efficiency is computed based on the runtime which 

shows that the proposed method takes less runtime than the compared methods. This 

indicates the DNN-SBL achieves the highest computational efficiency by taking less time to 

recover the sparse signal.  
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Fig. 3. Computational Efficiency 

 

Robustness to Noise and Signal Variations: The integration of Sparse Bayesian Learning 

(SBL) principles in DNN-SBL provides a probabilistic interpretation of signal sparsity and 

uncertainty. This enables more reliable and robust signal reconstruction, especially in the 

presence of noise and signal variations. 

Traditional methods like BP and Lasso may be susceptible to noise, especially when the 

signal-to-noise ratio is low. Greedy Algorithms may also struggle with noise, as they rely on 

iterative selection of atoms from the dictionary without explicitly considering noise models.  

By combining the representation learning capabilities of DNNs with the probabilistic 

modeling approach of SBL, the proposed framework achieves more accurate and robust 

sparse signal recovery while minimizing data requirements. 

 

 
Fig. 4. Robustness to Noise and Signal Variations 
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A high SNR in DNN-SBL indicates that the signal is much stronger compared to the noise 

level. In practical terms, this means that the signal is relatively clear and distinguishable 

from the noise. High SNR values are desirable as they suggest that the signal contains more 

useful information compared to noise, making it easier to extract meaningful insights or 

perform accurate measurements. 

The findings of this research have significant implications for various domains such as 

medical imaging,communication systems, and sensor networks. The ability to accurately 

reconstruct sparse signals from limited measurements can lead to more efficient data 

acquisition and transmission, enabling advancements in healthcare, telecommunications, and 

environmental monitoring, among others. 

Moreover, the proposed DNN-SBL framework offers a principled and interpretable approach 

to sparse signal recovery, providing insights into the underlying signal structures and 

statistical dependencies. This interpretability is essential for understanding and validating the 

results, as well as for guiding further research in the field of compressed sensing. 

The DNN-SBL framework offers several advantages over traditional methods such as BP, 

Lasso, and Greedy Algorithms, including enhanced reconstruction accuracy, robustness to 

noise, computational efficiency, interpretability, and adaptability to complex data 

distributions. These advantages make DNN-SBL a promising approach for sparse signal 

recovery in compressed sensing applications. 

 

5. Conclusion 

This research presents a novel framework for sparse signal recovery in compressed sensing 

applications by integrating Deep Neural Networks (DNNs) with Sparse Bayesian Learning 

(SBL) techniques. The proposed DNN-SBL framework combines the representation learning 

capabilities of DNNs with the probabilistic modeling approach of SBL to achieve robust and 

efficient sparse signal recovery. The result of the proposed DNN-SBL model is compared 

toeffective traditional algorithms such as basis pursuit, Lasso, and greedy algorithm to 

evaluate the overall performance. The DNN inspired SBL model working process is 

described. The comparison of simulation results shows that the proposed model achieves the 

highest reconstruction accuracy, computational efficiency, and robustness to noise and signal 

variations. MSE, RMSE, and PSNR are considered as the evaluation metrics in this 

paper.When compared to traditional approaches, the DNN-SBL model achievedthe least 

mean squared error, root mean squared error and high peak signal to noise ratio. Since the 

proposed model achieved this, fast sparse signal recovery is done in compressed sensing. 
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