
Nanotechnology Perceptions  
ISSN 1660-6795 

www.nano-ntp.com  
 

Nanotechnology Perceptions 20 No. S5 (2024) 540–547                                               

Streamlined and Efficient Management of 
Non-Relational Cloud Database Transactions  
Dr. Shantanu S Bose1, Dr. Sachin Deshmukh2, Devdatta Tare3, Anup 

Suchak4, Rajashree Joshi5, Lalit Agrawal6  
 

1Assistant Professior, Amity Business School, Amity University Chhattisgarh, 
shantanu@rediffmail.com 

2Associate Professor, MIT WPU 
3Assistant Professor, Post Graduate Teaching, Department of Commerce, Gondwana 

University, Gadchiroli. 
4Central Institute of Business Management Research and Development Nagpur 
5Associate professor, Don Bosco Institute of Management Studies and Computer 

Applications  
6Assistant Professor, ShriRamdeobaba College of Engineering and Management 

 
 

As cloud-based non-relational databases continue to gain traction for their scalability and flexibility, 
the management of transactions within these databases becomes increasingly crucial. Unlike 
traditional relational databases, non-relational databases often lack built-in transactional support, 
posing challenges for maintaining data integrity and consistency in distributed environments. This 
paper proposes a streamlined and efficient approach to anaging transactions in non-relational cloud 
databases. The proposed approach leverages a combination of architectural principles and advanced 
transaction management techniques tailored for non-relational databases. It focuses on optimizing 
transactional workflows, ensuring atomicity, consistency, isolation, and durability (ACID 
properties) while minimizing overhead and latency. Key components of the approach include 
distributed transaction coordination, optimistic concurrency control, and versioning mechanisms. 
Furthermore, the paper explores the integration of transaction management with cloud-native 
technologies such as microservices architecture and container orchestration platforms. This 
integration facilitates seamless scalability, fault tolerance, and resource efficiency in transaction 
processing.  
 
Keywords: Non-relational databases, Cloud computing, Transaction management, Scalability 
Flexibility, Atomicity.  

 
 
1. Introduction 

Cloud-based non-relational databases have emerged as a cornerstone of modern data 
management systems, offering unparalleled scalability and flexibility for storing and 
processing vast amounts of data. These databases, often referred to as NoSQL databases, have 



541 Shantanu S Bose et al. Streamlined and Efficient Management....                                                                                                                
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

gained widespread adoption across various industries due to their ability to handle diverse data 
types and support distributed architectures[1].  

Unlike traditional relational databases, which adhere to the principles of ACID (Atomicity, 
Consistency, Isolation, Durability), non-relational databases typically prioritize scalability and 
performance over strict transactional guarantees[2]. As a result, developers face the task of 
devising efficient strategies for managing transactions in non-relational cloud databases 
without compromising on these critical properties[3]. 

This paper presents a novel approach to addressing the transaction management challenges 
inherent in non-relational cloud databases. Our approach is grounded in a synthesis of 
architectural principles and advanced transaction management techniques tailored specifically 
for the characteristics of non-relational databases[4]. By leveraging distributed transaction 
coordination, optimistic concurrency control, and versioning mechanisms, we aim to optimize 
transactional workflows while minimizing overhead and latency[5]. 

A vast network of independent computer nodes is the basis of distributed and cloud computing 
systems. A storage area network (SAN), local area network (LAN), or wide area network 
(WAN) hierarchically connects these node devices. At now, a functional cluster consisting of 
hundreds of machines may be established with just a handful of switches[6]. Multiple smaller 
clusters can be linked together via a WAN to create one or more massive clusters. Massive 
systems are capable of reaching physically or logically web-scale connectivity and are hence 
highly scalable. There are four main types of massive systems: computing grids, internet 
clouds, clusters, and peer-to-peer (P2P) networks. Collectively, cooperatively, or 
collaboratively, these devices operate on several levels. 

Computers in a cluster are actually a collection of interconnected personal computers that share 
resources and can process massive amounts of data quickly and efficiently. A typical server 
cluster, as shown in Figure 1, is designed around an interconnection network that has low 
latency and high bandwidth. Virtual Private Network (VPN) gateways allow for the 
construction of interconnection networks with numerous levels of Ethernet or switches, 
allowing for larger clusters with more nodes to join[7]. Server operating systems often handle 
resource management in clusters with weakly linked nodes. If a cluster is perfect, it will 
combine many system images into one (SSI). 

 
Figure 1: A Cluster of Servers 

Cloud server systems, as seen in Figure 2, need a large number of storage-rich servers running 



                                                  Streamlined and Efficient Management… Shantanu S Bose et al. 542  
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

virtualization software to enable the simultaneous execution of several application 
programming interfaces (APIs). By enabling the simultaneous operation of many operating 
systems, virtualization is the crucial technology for optimizing server resources[8]. In 
application programming interfaces, this may be a game-changer since it gives consumers a 
benchmark for performance on the cloud. Keep in mind that the majority of server setups will 
employ an open source operating system like Linux, which is great for developers due to its 
reliability[9]. 

 
Figure 2: Cloud Constitution Elements 

 

2. Cloud Computing Components: 

Clients, a data center, and distributed servers are the building blocks of a cloud computing 
system. Users control their information in the cloud via clients, which are devices they 
communicate with. The portability of these devices—desktops, laptops, tablets, smartphones, 
and personal digital assistants—is a major factor propelling the growth of cloud computing. 
Customers may often be thin or thick, and they might be movable. Thin clients are often lauded 
for their many desirable qualities, such as reduced hardware prices, IT expenses, noise, power 
consumption, and security. Users' subscription applications are stored in the datacenter, which 
is a network of servers[10]. Server virtualization is becoming more popular in the IT industry. 
One reason virtualization is important to cloud computing is because it allows users to access 
cloud services. Virtualization comes in two varieties.  

When one machine's installation is run entirely on another, this is called full virtualization. 
The end result is a setup where every server-side program operates within its own virtual 
machine. Clients see the server-side applications in a fully virtualized setup. Both distinct apps 
and operating systems may coexist in such a setup. A certain set of hardware configurations 
was required to enable complete virtualization. It wasn't until 2005 that it was put into action, 
but with the release of AMD-Virtualization (AMDV) and Intel Virtualization Technology 
(IVT), everything about virtualization became much simpler[11]. Several uses have found 
success with full virtualization, including: allowing several users to use a single computer 



543 Shantanu S Bose et al. Streamlined and Efficient Management....                                                                                                                
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

system; isolating users from one another and the control application; and creating hardware 
emulators on other machines. 

Through the use of para virtualization, a single physical device may run many operating 
systems simultaneously while making better use of system resources such as memory and 
CPUs. An OS that has been modified to run in a virtual machine is used by the management 
module. Due of the need to replicate every component in the full virtualization approach, para 
virtualization is superior[12].  

Distributed Servers: The servers will be situated in different parts of the world. These servers 
may not really be physically located together, but to the cloud subscriber, it seems as if they 
are. Because of this, the service provider has greater leeway in terms of customization and 
safety. No more servers should be stashed away in the event that the cloud requires additional 
hardware[13]. They may just upload them to the cloud and use them from another location. 

 

3. Rudiments of Transactions 

Each operation against a database is called a transaction. Whether performed manually by an 
end user or automatically by a database software, transactions are units or sequences of work 
that are completed in a logical order. The process of updating a database with one or more 
modifications is called a transaction. Users are making transactions on the table whenever they 
do things like adding, editing, or removing records[14]. In order to manage database mistakes 
and maintain data integrity, transaction management is crucial. Moving funds between bank 
accounts is a typical example. That can only be accomplished by transferring funds from the 
user's original account to their new one. Complete success of the procedure is required. Money 
will be lost if the procedure stops midway, and the bank risks losing the client due to irregular 
transactions.  

Some additional things that modern database transactions perform include making sure that 
data cannot be accessed after someone else has written it partially. The underlying principle is 
the same, though: transactions guarantee that one's data is always in a reasonable state. They 
promise that funds will never be transferred from one account to another without the other 
party's knowledge. Distributed transactions are those that include several applications or hosts 
and are implemented by database systems[15]. Any number of systems, including databases, 
file systems, messaging systems, and others, may be involved in a distributed transaction that 
enforces the ACID characteristics. A coordinating service makes sure that all the necessary 
systems are updated with the details of a distributed transaction. If any portion of the 
transaction fails, all impacted systems will be rolled back, just as with database and other types 
of transactions. Thus, a transaction is just a set of actions. Database management systems' 
(DBMS's) transaction management capabilities allow them to oversee the many system 
transactions. Database management systems should guarantee correct transaction execution; 
in other words, the transaction must execute in whole or in part. A transaction is a logical unit 
of database operations that may access several data objects. In most cases, it is the product of 
a program coded in a programming language or data manipulation language with a high degree 
of abstraction. The ACID transaction characteristics should be followed by DBMS to 
guarantee data integrity. The four principles of ACID are A=Atomicity, C=Consistency, 



                                                  Streamlined and Efficient Management… Shantanu S Bose et al. 544  
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

I=Isolation, and D=Durability. Atomicity: The database correctly reflects all of the 
transaction's actions, or none of them. The term "all or nothing" describes this kind of feature. 

Each database transaction is executed as a single unit using a "all or nothing" approach, thanks 
to atomicity of transactions. The whole transaction is reversed if even a single statement fails. 
For a transaction to be considered consistent, it must change the database state from one that 
is consistent to another. In addition, relational databases check that all transactions follow the 
rules set down by the database administration. If any one part of an atomic transaction could 
compromise the database's integrity, the whole transaction would fail. 

 

4. Non-relational cloud databases differ from traditional databases 

Non-relational cloud databases differ from traditional databases in several ways: 

Data Structure: Traditional databases are primarily designed for structured data, while non-
relational databases can handle unstructured, semi-structured, and structured data 

Scalability: Non-relational databases are designed for horizontal scalability, allowing them to 
handle large volumes of data and sudden surges in demand more efficiently than traditional 
databases 

Flexibility: Non-relational databases offer greater flexibility, with schema-on-read or schema-
free options, allowing them to accommodate changing business requirements more easily than 
traditional databases 

Data Storage: Non-relational databases can store large amounts of data with little structure, 
while traditional databases are table and row-oriented, requiring a predefined schema 

Query Language: Traditional databases use SQL (Structured Query Language) for shaping and 
manipulating data, while non-relational databases use Object-relational-mapping (ORM) or 
other query languages 

Cost and Maintenance: Non-relational cloud databases typically have lower upfront costs, as 
they don't require purchasing and maintaining physical servers, and offer flexible subscription-
based models 

Data Integrity: Traditional databases provide more control over data integrity, as users can 
design data types, restrictions, relationships, and rules that govern the data 

Data Access: Traditional databases can provide faster data access and delivery, as they are not 
affected by network latency or congestion. 

 

5. Data consistency 

Non-relational cloud databases handle data consistency using different approaches compared 
to traditional relational databases. While relational databases use a structured approach to data 
management, ensuring data accuracy and consistency, non-relational databases offer 
flexibility in handling unstructured or semi-structured data with ease 

 



545 Shantanu S Bose et al. Streamlined and Efficient Management....                                                                                                                
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

Non-relational databases often employ the BASE consistency model, which stands for 
Basically Available, Soft state, Eventually consistent. This model prioritizes availability and 
partition tolerance over immediate consistency, allowing for high performance and scalability 

BASE databases do not guarantee immediate consistency across all replicas, but they ensure 
that data will eventually become consistent, either at read time or for certain processed past 
snapshots 

In contrast, relational databases typically use the ACID consistency model, which ensures 
Atomicity, Consistency, Isolation, and Durability. This model guarantees that all operations 
in a transaction either succeed or are rolled back, maintaining a consistent state and isolating 
transactions from one another 

The choice between ACID and BASE consistency models depends on the specific use case 
and the trade-offs between data consistency and performance. For applications requiring 
strong data consistency and integrity, such as financial or healthcare systems, ACID-compliant 
databases are often preferred. However, for applications where availability and scalability are 
more important, such as social media platforms or real-time analytics, non-relational databases 
with BASE consistency models may be more suitable 

Non-relational cloud databases handle data consistency using the BASE consistency model, 
which prioritizes availability and partition tolerance over immediate consistency. This 
approach allows for high performance and scalability but may not provide the same level of 
data consistency as traditional relational databases using the ACID consistency model 

 

6. Challenges in maintaining data consistency in non-relational cloud databases 

Indian economy has witnessed an uprising in the futures market since 2003 as a result of 
government removing the ban on futures trading. There are a range of reasons responsible for 
the unproductive growth of commodity futures market in India. But one among the major 
reason is price risk in commodity market, especially towards agriculture commodity. The 
production, supply and distribution of many agricultural commodities are restricted by the 
government and futures trading are allowed in certain agriculture commodity. Instability in 
prices of agriculture commodity is a major issue of the producers as well as the end users in 
an agriculture subjugated country like India. Generally, traders are interested to trade on 
instruments that provide safe returns for their investment[16]. The thumb rules of the market 
are low risk will provide low return. But now diversification of portfolio helps to reduce risk 
and increase return. Commodity market has attracted many investors, producers and farmers 
to trade and hedge their risk. 

Isolation: Actually, DBMS executes several transactions simultaneously. But the system 
makes sure that no two transactions are running in parallel with each other. If more than one 
transaction is about to happen at the same moment, the database engine will compel them to 
be isolated. No two transactions happen at the same time, and the database view that a 
transaction starts with is the only one that is changed before it ends. It is unacceptable for one 
transaction to ever touch the byproduct of another. 

Best practices for ensuring data consistency in non-relational cloud databases include: 



                                                  Streamlined and Efficient Management… Shantanu S Bose et al. 546  
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

Balancing Strong and Eventual Consistency: Non-relational databases like Google Cloud 
Datastore offer a balance between strong and eventual consistency to provide a positive user 
experience while handling large quantities of data and users 

Understanding Data Models: Choosing the appropriate data model, such as key-value, 
document, or graph databases, can help optimize performance and data consistency for specific 
use cases 

Implementing Replication Strategies: Implementing replication strategies can ensure data 
durability and fault tolerance, and can help maintain consistency in the event of network 
failures or concurrent updates 

Using Indexing and Data Structures: Efficient indexing and data structures can support 
efficient querying and optimize read and write performance 

Defining Consistency Requirements: It is critical to choose the right consistency level 
according to the application's data availability, accuracy, and performance needs. 

Implementing Robust Security Measures: To safeguard the NoSQL database and prevent data 
corruption, alteration, or loss, authentication methods, encryption, and access control lists may 
be used. 

Regularly Monitoring and Optimizing: Regularly monitoring and optimizing the database, 
including indexes, queries, and security measures, can help ensure optimal performance, 
scalability, and data integrity 

Table 1: Transaction Schedules 
BEGIN-TRANSACTION 

Y=0;Y=Y+1; END-TRANSACTION 
BEGIN-TRANSACTION Y=0; 
Y=Y+2; END-TRANSACTION 

BEGIN-TRANSACTION 
Y=0;Y=Y+3; END-TRANSACTION 

Three different transactions are illustrated in table 1. If all the three are executed serially, the 
result of Y will be 3 at the end. The arrangements of the transactions as 

1. Y=0;Y=Y+1; Y=0;X=Y+2; Y=0;Y=Y+3;  

2. Y=0;Y=0;Y=Y+1;Y=Y+2;Y=0;Y=Y+3;  

3. Y=0;Y=0;Y=0;Y=Y+1;Y=Y+2;Y=Y+3; Of the above arrangements, 1 and 2 will be correct 
since Y=3 at the end. But 3 will be illegal since Y=5. So serilizability is the important aspect 
of isolation 

 

7. Conclusion 

This paper has presented a comprehensive approach to achieving streamlined and efficient 
management of transactions in non-relational cloud databases. We have addressed the 
challenges posed by the absence of built-in transactional support in non-relational databases, 
focusing on optimizing transactional workflows while ensuring atomicity, consistency, 
isolation, and durability (ACID properties).Our proposed approach leverages a combination 
of architectural principles and advanced transaction management techniques tailored 
specifically for non-relational databases. By incorporating distributed transaction 
coordination, optimistic concurrency control, and versioning mechanisms, we have 



547 Shantanu S Bose et al. Streamlined and Efficient Management....                                                                                                                
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

demonstrated the ability to maintain data integrity and consistency in distributed cloud 
environments. 

Conflicts of Interest 

The authors declare that they have no competing interests. 

 

 
References 
1. A. Raut, “NOSQL database and its comparison with RDBMS,” International Journal of 

Computational Intelligence Research, vol. 13, no. 7, pp. 1645–1651, 2017. 
2. J. Pokorny, “NoSQL databases: a step to database scalability in web environment,” 

International Journal of Web Information Systems, vol. 9, no. 1, pp. 69–82, 2013. 
3. R. Kanwar, P. Trivedi, and K. Singh, “NoSQL, a solution for distributed database 

management system,” International Journal of Computer Applications, vol. 67, no. 2, pp. 6–
9, 2013. 

4. D. McCreary and A. Kelly, Making Sense of NoSQL, Manning, Shelter Island, NY, USA, 
2014. 

5. Y. Li and S. Manoharan, A Performance Comparison of SQL and NoSQL Databases, IEEE, 
Piscataway, NJ, USA, 2013. 

6. Z. Bicevska and I. Oditis, “Towards NoSQL-based data warehouse solutions,” Procedia 
Computer Science, vol. 104, pp. 104–111, 2017. 

7. M. Stonebraker, “SQL databases v. NoSQL databases,” Communications of the ACM, vol. 
53, no. 4, pp. 10-11, 2010. 

8. J. Han, H. Haihong, G. Le, and J. Du, “Survey on NoSQL database,” in Proceedings of the 
2011 6th International Conference on Pervasive Computing and Applications, Port Elizabeth, 
South Africa, October 2011. 

9. D. G. Chandra, “Base analysis of NoSQL database,” Future Generation Computer Systems, 
vol. 52, pp. 13–21, 2015. 

10. D. Bermbach and S. Tai, “Eventual consistency: how soon is eventual? An evaluation of 
Amazon S3’s consistency behavior,” in Proceedings of the 6th Workshop on Middleware for 
Service Oriented Computing, pp. 1–6, Lisbon, Portugal, December 2011. 

11. P. Vassiliadis, “A survey of extract-transform-load technology,” International Journal of 
Data Warehousing and Mining, vol. 5, no. 3, pp. 1–27, 2009. 

12. P. Vassiliadis and A. Simitsis, “Extraction, transformation, and loading,” Encyclopedia of 
Database Systems, Springer, Boston, MA, USA, 2018. 

13. S. K. Bansal and S. Kagemann, “Integrating big data: a semantic extract-transform-load 
framework,” Computer, vol. 48, no. 3, pp. 42–50, 2015. 

14. Nejrs, Salwa Mohammed(2023) Medical images utilization for significant data hiding based 
on machine learning, Journal of Discrete Mathematical Sciences and Cryptography, 26:7, 
1971–1979, DOI: 10.47974/JDMSC-1785 

15. Lin, Lon, Lee, Chun-Chang, Yeh, Wen-Chih& Yu, Zheng(2022) The influence of ethical 
climate and personality traits on the performance of housing agents, Journal of Information 
and Optimization Sciences, 43:2, 371-399, DOI: 10.1080/02522667.2021.2016986 

16. Johri, P., Khatri, S.K., Al-Taani, A.T., Sabharwal, M., Suvanov, S., Kumar, A. (2021). 
Natural Language Processing: History, Evolution, Application, and Future Work. In: 
Abraham, A., Castillo, O., Virmani, D. (eds) Proceedings of 3rd International Conference on 
Computing Informatics and Networks. Lecture Notes in Networks and Systems, vol 167. 
Springer, Singapore. https://doi.org/10.1007/978-981-15-9712-1_31 


