
Nanotechnology Perceptions 20 No.S3 (2024) 661–679

An Innovative Testing Model Using Gene

Mutation Technique for Android

Applications

Muhammad Arshad Javed, Dr. Rosziati Ibrahim

Department of Software Engineering, Faculty of Computer Science and Information

Technology (FSKTM) UTHM, Malysia.

Android applications have more new updates, sales, and downloads than any other mobile

platform popularity of Android smartphones. These programs' enormous amount of code raises

serious questions about the software's quality. Testing Android applications, nevertheless, owing

to the distinctive program structure and new aspects of evaluating modern Java programs, Simple

test coverage metrics like statement coverage are insufficient to guarantee excellent quality in

apps. applications for Android. While academics are very interested in developing better Android

testing techniques, there are yet no practical methods for analyzing their suggested test selection

tactics. We predict that mutation analysis, which has been proven to be a successful method of

designing tests in other software domains, is also a workable option for Android apps. This

research suggests a novel mutation analysis strategy tailored to Android app development. We

propose mutation variant operators particular to the features of Android apps, such as the inherent

event-drivenness, the specialized Activity lifecycle structure, and the widespread usage of XML

files to determine layout and behavior. We also discuss an empirical investigation we conducted

to assess these variant operators. We have created a program that modifies the source code of

Android apps using the innovative Android mutation operators, producing variants that can be

deployed and used on Android platforms. Through an empirical investigation of real-world apps,

we assessed the effectiveness of Android mutation testing. This work offers a large empirical

investigation using real-world applications, introduces various unique variant operators derived

from a error analysis of Android applications, and draws conclusions after analysing the findings.

The findings demonstrate that the innovative Android variant techniques provide comprehensive

testing for Android apps. We also highlight difficulties, opportunities, and future research areas to

improve the performance of variant analysis for mobile apps since the application of mutation

testing to Android apps is still in its infancy.

Keywords: Mutation, Android application, Mutant operators, Machine learning.

1. Introduction

A piece of software known as a mobile application runs on mobility devices, such as a tablet

or smartphone. As new base become accessible, additional applications are promoted, costs

 An Innovative Testing Model Using… Muhammad Arshad Javed et al. 662

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

decline, and many consumers go for many modern devices. Hence the number of mobile

applications (apps) is increasing day by day. In the third quarter of 2014, Android accounted

for 83.1% of market sales, while iOS came in second with 12.7%. [1]. The Google Play

Store, the leading Android app marketplace, has over a million applications accessible for

consumers, and hundreds more are uploaded every day. Quality is a critical and expanding

issue, as might be expected. Numerous programs that are released onto the market have

serious flaws, which frequently cause failures while being used. Bhattacharya et al. [3]

examined 29,233 bug complaints in twenty-four popular open-access applications Android

applications to examine the prevalence of software flaws in applications for Android. They

discovered that over 8,500 bug reports were subsequently confirmed as issues by developers

and subsequently addressed. They found issues with all of the Android apps they examined.

While inadequate use of software engineering concepts, such as minimal or no testing

strategies, contributes to the problem in some cases, there is also a significant technological

issue. Our entire research effort is to provide testing methodologies that can help

programmers detect bugs in Android apps before they are released, especially in the code

that uses new programming capabilities (as described in Section 2). In particular, we suggest

making use of mutation analysis, a sophisticated testing method well-known for assisting

engineers in creating effective tests. In order to create new mutation operators, we first

analyse the distinct technological properties of Android apps. It is probable that tests that

eliminate such mutations may find numerous use errors. The study has implemented both

new Android variant operators and several outdated variant operators in a prototype mutation

analysis tool developed and implemented. There are three methods to employ our Android

mutation analysis tool. Mutation analysis stands among the highly effective approaches or

generating test cases. Thus, extremely effective tests may be created using mutation [4-5].

Second, a mutation analysis tool may be used to compare various Android app testing

strategies once it has been finished, refined, and made accessible to other researchers. Third,

many pre-existing tests that a tester has are likely to be redundant. The following

contributions are made by the paper:

• It describes brand-new mutation operators that are exclusive to Android

applications.

• Eight Android applications are used to test these mutation operators.

• It pinpoints potential study areas for Android app mutation analysis.

The essay is structured as follows: Section 2 provides background information on the

essential features necessary for framework development. Section 3 outlines the proposed

approach, while Section 4 covers the experimental analyses conducted to evaluate the

proposed models. Section 5 offers a concise summary and discusses future directions.

2. Background

Compared to traditional software, Android applications are developed differently and

employ fresh control and data links. In this study, mutation testing—an established testing

method—is being applied to a novel kind of software—mobile applications. We must thus

663 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

give a quick explanation of how an Android app functions before moving on to our study,

followed by a description of mutation testing [6-8].

a) Programming Android Applications

The Android Application Development Framework is the development environment

included with Android (ADF). An API is available through the Android ADF to assist with

app development, GUI design, and device data access. Linux-based middleware, pre-

installed programs, and system libraries are all part of the Android operating system [9].

Before version 4.4, Android ran Java apps using the Dalvik Virtual Machine [35]. (KitKat).

Android Runtime took the role of Dalvik in the most recent version, Android 5.0 (Lollipop)

(ART)[25]. However, according to Google, the majority of Dalvik-optimized programs

ought to function under ART without any modifications [10, 11, 17].

The general design or coding process of Android apps are unaffected by the change. Android

apps can broadcast its characteristics for use by other apps, but with some restrictions. An

obligatory manifest file, four different sorts of components, and a new framework are all

used in the construction of Android apps. The ADF retrieves information about the app from

XML-based manifest files, containing configuration details and descriptions of the app's

components[33].

With some restrictions, Android apps can also expose their attributes for use by other

applications. Activities, Services, Broadcast Receivers, and Content Providers are the four

different sorts of parts that make up Android applications. Based on one or more layout

designs, an activity shows the user a screen. Different configurations for various screen sizes

may be included in these layouts.

View widgets, or GUI controls, are defined by the layouts. A unique identity for each widget

serves as the description of the controls and their layout in an XML configuration file. On

the device, background service components are always active. They carry out actions like

step tracking, keeping track of set alarms, and playing music that don't require user

participation. Despite the fact that they might communicate with an action, which in turn

communicates with the monitor, services do not interface with the screen directly. Calendar,

pictures, contacts, and audio files are just a few examples of the structured data that a content

provider keeps and makes available for users to access. Finally, a Broadcast Receiver

manages announcements sent to the entire system, including low battery. An intent message,

which contains both the information the component requires and the action the component

should perform, is used to activate an Android component. Dynamic linkingof messages is

supported by Android. Instead of being openly present in the app, calls are routed through

the Android messaging service to allow this. All significant parts of Android must follow a

predefined lifetime, including Services and Activities [12]. The ADF controls these actions.

The lifespan of an activity is depicted in Fig. 1 as a series of occasions and conditions.

Running, pausing, and stopping are the three states. Events onCreate(), onStart(), and

onResume() bring about the Running state (). The Activity is put into the Paused state by

onPause(), then into the Stopped state by onStop(), and finally back into the Running state by

onResume(). The Activity can quit with a onDestroy() event or transition from Stopped to

Running using onRestart(), onStart(), or onResume(). According to a subsequent

explanation, ADF contacts lifecycle event handlers and is crucial to our research.

 An Innovative Testing Model Using… Muhammad Arshad Javed et al. 664

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

b) Mutation Analysis

This study uses mutation concepts to provide efficient tests for Android app parts. A

software artifact is altered during mutation testing to produce new iterations known as

mutants, such as programs, requirements specifications, or configuration files [13]. By

applying criteria for altering the software artifact's syntax, mutants are often designed to be

flawed versions. They are known as variant manipulators. The tester then sets tests, known

as killing the mutant, that cause the original and each altered variant to display distinct

characteristics. For instance, the ROR operator for obsolete development tools substitutes

every occurrence of each relational manipulator, such as =, with remaining comparison

operators, such as, ==, >, >=, and! =, as well as trueOp and falseOp, which determine

conditions as true or false [14]. In certain cases, mutation operators produce modifications

that are comparable to those seen in Activity Lifetime in Android applications, can

occasionally be introduced, forcing testers to provide test data that reveals erros.

In certain cases, variant manipulators, produce modifications that are comparable to those

seen in Activity Lifetime in Android applications, can occasionally be introduced, forcing

the testing operators to provide sample data that are likely to uncover flaws. To determine

the proportion of mutations that the tests successfully eliminate, each variant is tested against

the performance in a test suite. The mutation adequacy score is what we refer to as. It has

been consistently found that mutation testing is generally more rigorous than alternative

evaluation methods. The prime reason for its robustness is the fact that it applies global

requirements as well as local ones, such as the ability to traverse a sub path in the control

flow graph or reach a statement (reachability) [14–16]. It also stipulates that the modified

statement must produce a fault in the service's effective execution (infection), and that this

error must spread to cause wrong external behaviour of the altered program (propagation

from that mistaken state). Some mutants cannot be eliminated because they behave exactly

like the original software regardless of the input. Equivalent describes these mutations. A

notable challenge in variant testing is identifying and excluding similar mutations, which can

be costly. Due to the alteration making the program syntactically wrong, certain mutants do

not compile and are stillborn [14,17-19]. While most of these stillborn mutants may be

prevented provided the variant manipulators are correctly created and executed, some do

happen. A mutation system has to be capable of identifying stillborn mutants and excluding

them from further analysis. C, Java, and Fortran are only a few of the numerous languages

for which mutation operators have been developed [20–23]. Android app mutation operators

concentrate on Android's unique characteristics, such as the manifest file, activities, and

services.

3. Proposed Study

Figure 1 illustrates various modules which constitutes the proposed framework. The first

module collects and organizes the applications. The second module is the pre-processing

module, which initially checks and filters the actual java and XML based applications. The

pre-processing module checks for the completeness of the applications and cross checks

whether the applications can be compiled and executed successfully. Next comes the

mutation module, where the java based and XML based application formats are muted and

665 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

fused to form a generalized APK file formats which are used as input to the proposed testing

model. Followed by mutation process the suggested testing model operates to parse the APK

based applications and compares each token of the statements in the source code of the

application with the predefined application structure formats to verify whether the structure

of the application is proper. Testing applications having similar instruction set as that of

predefined instruction set are rejected, while unlike instruction set are accepted. The final

stage in the framework is the evaluation phase which is used to evaluate the suggested test

model using various metrics like accuracy, efficiency and quality [20]Proposed framework

shown in fig. 1.

Figure 1. Proposed framework

The detailed execution process of the proposed test model for testing Android-based

applications is depicted in Figure 2. This research utilizes various Android mutation analysis

tools, including muDroid, which introduces new Android mutation operators alongside

traditional Java mutation operators from MuJava and deletion operators. The analysis tool

extends a portion of the MuJava mutant generation algorithm to accommodate these

mutation operators for Android. It applies these mutation operators to the original Java files

based on mutation principles and converts them to bytecode for standard Java mutation

operators. XML-related mutation methods are applied to XML files, generating new versions

of each file with XML mutants. Subsequently, in the creation of APK files, the Android

mutation testing tool replaces these files to prepare them for runtime binding.

The mutation process involves selecting a modified Java bytecode-class file, integrating it

with other proposed files, and generating a modified APK file that acts as a altered version of

the Android app under examination. Some mutations may lead to compilation errors.

Furthermore, several external Android automation tools, such as Robotium, Espresso, and

Selendroid, are commonly utilized by researchers and developers to automate testing of

Android apps. These testing frameworks are also adapted for use in Android mutation

testing. Researchers can develop test cases using these Android automation frameworks

designed to detect mutations. Once mutants are created and packaged into APK files, the

system installs the test app on devices. It compiles all test cases, executes them across

 An Innovative Testing Model Using… Muhammad Arshad Javed et al. 666

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

various applications, and records the results [21–22].

Figure 2. Overview of proposed testing model

After that, the Android device is given the APK mutant file. The mutation system executes

all difficult instances in accordance with the mutants and records the results as actual

outcomes. The Android research tool then compares the actual findings to the expected

results after gathering all the results. If the actual test results differ from the anticipated test

results, the mutant is documented as having been eliminated by the test. The Android

mutation research tool calculates the mutation sufficient result at the conclusion, which is the

ratio of mutants killed by tests to the total number of non-alike mutants. The researcher must

manually eliminate equivalent mutants because the tool doesn't use any heuristics to help

identify equivalent mutations [24].

a) Proposed Method to Reduce Mutants

In order to efficiently analyse the Android application instructions, we must first create a

mutant branch. Construction of mutated buds and development of an innovative application

constitute the initial stage of our technique, which converts the gaps identified of eradicating

mutation into that of concealing mutant parts. P represents the initial program. Assume that

statement s is the mutated statement and that statement s represents the mutated

state. (P) becomes a mutant, denoted as (m), when (s) is swapped out for (s).

667 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

During testing a recessive variant, if a test datum eliminates m, it should approach (s) and

yield a neighbouring state after performing s, i.e., s! = s. The marked statements, which

indicate that m is eliminated, are utilized as actual outlets., represented as b, to produce a

conditional declaration with ("s! = s") as the predicate. Thus, hiding the true fraction of

(b) becomes the issue at hand while trying to eliminate (m). Due to the mutual mapping amid

(b) and (s), or alternatively between (b) and (m), (B) is referred to as a recessive outlet. We

merge all the variant divisions using both the original and modified statements after

smearing all the variant tokens to P. The merged mutation stems are referred to as b1, b2, bN

and their associated mutants as m1, m2, mN, when (N) is the count of mutation descendant

(mutants). All of the variant outlets are successively merged into the original applications to

produce a new one, denoted as (P). Table 1 details the creation of mutation stems using

MuClipse's common mutation operators. Here, MuClipse is a MuJava connector for Eclipse

that has the ability to create and run variants dynamically. Mutation testing software like

MuJava is frequently utilized in academic settings. This table shows the initial statement s,

the updated phrase s obtained by applying a modified form to s, and the mutation stem b

formed by fusing (s) and (s). For instance, after running AORB on "a1 + b1" a mutated

statement "a b" is generated, and "a1 + b1" and "a b" are merged to form their matching

mutant branch, If ((a1 + b1)! = (a1 b1))". Several of the mutation operators in Table 1 may

have an effect on the execution result P. As an illustration, the results of applying AOIS on

the variable "a" in the phrase "a1 + b1" are "+ + a1", "a1", "a1 + +," and "a1." According to our

study, the words "+ + a1" and "a1" are instantly replaced with the words "(a1 + 1)" and "(a1

1)," respectively. We substitute "(a1 + 1)" and "(a1 1)," respectively, because "a1 + +" and

"a1" affect the subsequent code in P [37].

Ansgle is a popular example of software testing [24,30,31], and Fig. 3(d) displays its Java

version. Fig. 3 illustrates the creation of P as follows: (a) the code for P (Triangle); (b) the

code from lines 7 to 9 in (a); (c) the mutant branches produced as a result of performing

ROR on If (a1 == b1)" and AORB on "ans = ans + 1," respectively; and (d) the CFG

following the insertion of mutant branches into P. The implanted mutant branches are shown

in Fig. 3(d) by the dashed boxes. Although each contains two branches the actual branch and

the fake branch, we only take the true branch into account. Additionally, the phrase (s) in the

actual stem reveal that its original section is covered, i.e., weak mutation testing reveals an

unexpected state. After the development of the novel application, P, the issue of deleting

(Nn) mutants in (P) is turned into the issue of concealing N mutation nodes in (P). But the

complexity of addressing the transformed problem is significantly increased by the

abundance of mutant branches in (P). We demonstrate the increasing structural complexity in

(P) using the software in ig. 3(a). To modify the program, all 15 of MuClipse's typical

operators are chosen. From lines 6 to 15 in Fig. 3, 78 mutants are produced (a). Table 2

contains a list of the mutants, where "others" stands for the other nine mutation operators that

produce no mutants. 26 mutants are produced for If (a1 == b1)" (lines 7 to 9 in Fig. 3 (a), with

16 of them coming from If (a1 == b1)" (line 7) and 10 from "ans = ans + 1." (line 8). There

are additional 26 created mutant branches, and Table 3 lists their predicates. By

incorporating these variant branches into the actual application, the simplified CFG of the

new program is illustrated in Figure 3 (b) (lines 7 to 9), where each number corresponds to a

predicate in Table 2.[26][27]

Nanotechnology Perceptions 20 No.S3 (2024) 661–679

Table 1. The construction process of mutant branches
Mutation

Operator

Description Original

Statement (s)

Muted

Statement(s)

Mutant Branch

(b)

MORB Replacing the

Fundamental Arithmetic

Units

c1 + d1 c1∗d1 if ((c1 + d1)!=

(c1∗d1))

MORS Instant Numerical

Procedure Replacement

c1 + + + d1 c1 −−+ d1 if ((c1 + 1 + d1) !=

(c1 − 1 + d1))

MOIU

Add minor arithmetic

computations

c1 + d1 c 1+ d 1 if ((c1 + d1) != (−c1

+ d1))

MOIS

Insertion of a short

mathematical unit

c1 + d1 + + c1 + d1 if ((c1 + d1)! = (c1+

1 + d1))

MODU

Elimination of pointless

unary arithmetic elements

−c1 + d1 c1 + d1 if ((−c1 + d1) != (c1

+ d1))

MODS Elimination of rapid

arithmetic elements

c1 + + + d1 c1 + d1

if ((c1 + 1 + d1) !=

(c1 + d1))

RepOR Alternative to Logical

Activity

c1> d1 c1<= d1 if ((c1> d1) !=(c1<=

d1))

RepDF Substitution of Reliant

Unit

c1> d1

||c < d

c1> d1&& c < d if ((c1> d1||c1< d1)!

=(c1> d1&&c < d))

RemDF Effectively Removing

Reliant Function

!(c1 > d1) c1> d1

if (!(c1> d1) != (c1>

d1))

AddDF A reliant function is

included

c1> d1 c1> d1) if ((c1> d1)! = !(c1>

d1))

ShifRO

Substitution for Shift

Activator

c1>>d1 c1 >>> d1 if ((c >>d)! =

(c1>>> d1))

LogR

Substitution for Logical

Operator

c1| d1 c1&d1 if((c1|d1) != (c&d))

LogI Inclusion of Logical

Operators

c1 + d1 ∼ c1 + d 1 if((c1 + d1) !=(∼ c1

+ d1))

The variant outlets produced by AOIS in Table 2 require further conversion, as shown in

Table 1. If the effect of a modified statement cannot be communicated or there is no

reference to a variable in the subsequent code, the corresponding mutation is considered

equal. Because of this, claims like "ans = ans + + + 1" and "ans = ans + 1"—which

correspond to predicates 25 or 26 in Table 2—are illogical. Because "ans" starts off with a

value of 0, further condition 7 in Table 2 is similarly impossible [28].

When 78 mutated variants are introduced into P, spanning lines 6 to 15 in Fig. 3(d), the

number of paths increases 26-fold compared to the three branches in the original program.,

which are shown in Fig. 3(d). This suggests that lowering mutation stems in P is required

because the line count in (P) is increased by at least 23 times, and each variant outlet

comprises at least three lines of code (20 to 26). (P) must be simplified by determining the

leading link among variant outlets. [29][30].

669 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

1. Public static int getMut(int c, int b, int

c){

2. int ans;

3. If (c<=0||d<=0||e<=0)

4. return 4;}

5. ans=0;

6. If(c==d){

7. ans=ans+1;

8. }

9. If (c==e){

10. ans=ans+2;

11. If (d==e){

12. ans=ans+3;

13. }

14. If(ans==0){

15. If(c+d<=e) ||(d+e)<=c||(c+e)<=d){

16. return 4;

17. } else {

return 1;

18. }

19. }

20. If/(ans>3){

21. return 3;

22. } elseif (ans==1 &&c+d>c){

23. return 2;

24. } else if(ans==2 && c=e>d)

25. return 2;

26. } else if (ans==3 &&d+e>c){

27. return 2;

28. }

29. return 4;

30. }

Figure 3(a). Process of forming new program

 An Innovative Testing Model Using… Muhammad Arshad Javed et al. 670

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

Figure 3(b).The CFG of lines 7 to 9

Figure 3(c). CFG after inserting mutant branches

671 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

Figure 3(d). CFG of new program

Establishing the Dominance Relationship among Mutant Branches

The divisions in P that comprise both the actual and the variant ones are not entirely

autonomous, despite the reality that the fusing of variant divisions enhances structural

complexity. For instance, if mutant branch 15 in Table 3 and Fig. 3(d) is implemented, 16

to18 must also be carried out. The explanation is as follows. First, the reachability

requirement for the three branches mentioned above is the same. Second, whereas the

conditional expressions of 16 and 18 may be reduced to "a1 == b1||a1 b1" and "a1 == b1||a1>

b1," respectively, the contingent interpretation of 17 can be reduced to "a1 b1." Since "a1 b1"

is a prerequisite for both "a1 == b1||a1 b1" and "a1 == b1||a1> b1," any experiment piece of data

that executes the real offshoot of 17 must also execute the branches of 16 and 18." Mutant

branches 6, 9, and 10 must also be carried out if mutant branch 5 (the actual section) is

carried out. The aforementioned findings support the assertions that (1) there is a connection

amid mutant branches in P and (2) this correlation may be used to detect redundant mutant

branches. The dominance relation is the name given to the correlation shown above. Table 5

illustrates the overall mutant operator and their respective operators after the final mutation

process.

Table 2. The mutation operators and the number of mutants

Mutation operator Mutants

AOIS

AOIU

AORB

COI

LOI

ROR

others

Total

33

3

12

3

9

15

0

78

 An Innovative Testing Model Using… Muhammad Arshad Javed et al. 672

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

b) Influence of Mutants over Influence Factor

Improvement factor (IF) is defined as the quotient between the time where no techniques are

used over the time where one or more cost reduction techniques are used. (IF) is estimated

using the below equation.

𝑰𝑭 =
(𝑴}−(𝑻𝒄𝒐𝒎𝒑𝒍𝒊𝒆 + 𝑻𝒑𝒖𝒔𝒕)+ 𝑻𝒊𝒏𝒔𝒕𝒂𝒍𝒍 + 𝝆−𝑻𝒓𝒖𝒏

𝝅(𝑻𝒄𝒐𝒎𝒑𝒍𝒊𝒆 + 𝑻𝒑𝒖𝒔𝒕)+ 𝑻𝒊𝒏𝒔𝒕𝒂𝒍𝒍)+𝑴 𝝆−𝑻𝒓𝒖𝒏
(1)

Usually the (IF) factor stabilises when the count of variantsincreases. Given that the

assumptions used in the theoretical models are reasonable, we can use any values for the

various indicators in Eq. 1 to represent the trends. The proposed mutation model stabilises

the (IF) factor by using minimum number of mutants.Tools version, description details

shown in table 2a.

4. Experimental Analysis

Table 2a. Experimental Analysis

S.No Tools Version Description

1 Xamarin 5.0 Developing mobile application

3 Matlab R2021a Developing applications

4 Java 15 Developing applications

5 Mogo DB 5.0 Database

6 Linux 5.4. 0-26 Operating System

Table 3. The predicates of the constructed mutant branches

Mutant

Operator

Predicate

AOIS 1. if ((c == d) != (++c == d));

 2. if (c == d) != (− − c == d));

3. if ((c == d) != (c == ++d));

4. if((c == d) != (c == − − d));
5. if ((ans + 1) != (++ans + 1));

6. if ((ans + 1) != (− − ans + 1);

21. if ((c == d) != (c++ == d));

22. if ((c == d) != (c − − == d));

23. if((c1 == d1) != (c1 == d1++));

24. if ((c1== d1) != (c1 == d1 −

−));

25. if ((ans + 1) != (ans++ + 1));

26. if ((ans + 1) != (ans − − +

1)).

AOIU 7. if ((ans + 1) != (-ans + 1)).

AORB 8. if ((train + 1) != (ans - 1));

9. if ((ans + 1) != (ans∗ 1));

10. if ((ans + 1) != (ans / 1));

11. if ((ans + 1) != (ans % 1)).

COI 12. if ((c1== d1) != (!(c1 == d1))).

LOI 13. if ((c1 == d1) != (∼ c1 == d1));

14. if ((c1 == d1) != (c1 == ∼ d1));

15. if ((ans + 1) != (∼ans + 1)).

ROR 16. if ((c1 == d1) != (c1< d1)); 17. if ((c1 == d1) != (c1<= d1));

18. if ((c1 == d1) != (c1 != d1)); 19. if ((c1 == d1) != (c1>= d1));

20. if ((c1 == d1) != (c1> d1)).

Figure 4 given below, describes the overall flow of the proposal. Initially the sample

673 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

application is taken as input. The application is synthesized as individual tokens. The next

stage is muting the tokens. After muting the muted tokens are compared with the sample

error tokens. If discrepancy is found, the actual application is free of errors else if

discrepancy is found, the application has runtime bugs, which has to be further removed, to

make the applications stable and free from runtime errors. The study uses Xamarin 4.8.0-sr2,

to develop the prime applications and implement the proposed framework. Different types of

applications to synthesize the application code into individual tokens, muting the original

token generated from the application and applications used to estimate the discrepancy

between the original muted version of the application and sample error testing application.

We have opted Xamarin tool due to its versatile characteristics such as native user

experience, single technology stack, shared application logic, cost effective, integrated

testing and easy maintenance.

Herewith we are displaying the execution of the testing model.

Figure 4. Flow of testing model

Figure 5. Discrepancy in muted and sample tokens

 An Innovative Testing Model Using… Muhammad Arshad Javed et al. 674

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

The above Figure 5 displays the discrepancy found in the muted and sample tokens of the

application, which implies that the application is error free.

Figure 6. No discrepancy in muted and sample tokens

The findings shown above also show that there is no difference between the sample and

muted error tokens, suggesting that the initial proposal may have some flaws that need to be

fixed beyond to make it stable. The trials will use ten of the programs listed in Table 4. J1,

J2, J3, and J4 are traditional mutation analyzing programs that first occurred in [2], [4], [30],

and [31], respectively. J5 and J6 are sample programs from [32], and J5, J6, and J7 are

research procedures from [36]. J8, J9, and J10 are programs for creating mutants [5]. All

these are programmed in Java. For each program in Fig. 7, the transformation values increase

instantly until they approach 80% (or even 90% in rare scenarios), and then steadily surge

from 80% to the top. Just 12 test results are needed for J1 to achieve an 80 percent mutation

score before mutant reduction. After reducing the number of mutants, only 9 samples are

required to achieve the mutation result of 80%, while 22 samples are required to achieve the

highest variant score (98.95%). However, 15 test results are needed from 80% to the highest

percentage (98.25%). This implies that there are some mutants that are tough to kill and that

it is hard to increase the transformation score much after it has reached a certain amount

(such as 80 percent or 90 percent).

c) Comparison with other Related Works

(IF) factor among the mutants is estimated using our proposed mutant model and other

related gene mutation model for testing android applications developed by [38]. Figure 8

clearly shows that the proposed model maintains the (IF) factor as the number of mutants

increases. From the figure it is evident that in the proposed approach the (IF) factor stabilizes

when the number of mutants is less over the referred study. This clearly indicates that

techniques proposed work when they are actually needed. The proposed model checks (or)

use it modules efficiently to test the needed Android applications. While in the referred

study, their approach stabilizes the (IF) factor only when the number of mutants is increased

more when comparing the proposed approach. The results are displayed in Figure (8).

Similarly, we have executed all the test cases against the mutants in eight variants for our

proposed model.

675 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

We have executed 3 times the 31 test cases against the 1600 mutants using 1 and 2 devices.

The experiments were performed under four categories namely (i)Mutant Schema (MS), (ii)

No Mutant Schema (NoMS), (iii) All against all (AA) and (iv) Only Alive (OA). From the

results obtained we find that there is negligible difference between the actual and estimated

approaches, which prove the accuracy and efficiency of the proposed approaches. Table 4

illiterates the testing results. The suggested research involves a comparison between the

empirical findings achieved for Android operators and the analogous methodology

conducted in study [34]. Table 5 illustrates the outcomes, emphasizing that the proposed

teasing model detects a greater number of mutants across all operators, subsequently

eliminating them from the application, resulting in an enhancement of the mutation scores.

Figure 4. IF factor comparison

0

5

10

15

20

25

30

35

40

45

50

950 1000 1050 1100 1150 1200 1250
No of mutants (Proposed Study)

(IF) Factor

0

5

10

15

20

25

30

35

40

950 1000 1050 1100 1150 1200 1250

No of mutants (Referred Study [33])

(IF) Factor

Nanotechnology Perceptions 20 No.S3 (2024) 661–679

Table 4. Actual and estimated times in proposed approach

Table 5. Empirical results for android operators
Opera

tor

Refereed Study [34] Proposed Study

Killed

Muta

nts

Equival

ent

Mutants

Live

Muta

nts

Total

Muta

nts

Mutati

on

scores

Killed

Muta

nts

Equival

ent

Mutants

Live

Muta

nts

Total

Muta

nts

Mutati

on

scores

APD 10 4 21 35 0.321 25 4 10 39 0.5

IPR 7 0 0 7 1.000 17 0 0 17 1.000

ITR 181 0 29 290 0.862 240 0 0 240 0.982

ECR 111 0 4 115 0.965 125 0 1 126 0.978

ETR 2 0 0 2 1.000 12 0 0 12 1.000

FON 146 949 25 1120 0.854 181 23 2 206 0.938

MDL 18 1 5 24 0.783 22 1 0 23 0.865

BWD 36 0 0 36 1.000 54 0 0 54 1.000

TWD 6 0 4 10 0.600 14 0 0 14 0.728

ORL 13 0 35 48 0.271 25 0 10 35 0.581

BWS 0 0 99 99 0.000 0 0 12 12 0.858

Total 530 954 222 1786 7.656 715 28 35 778 9.43

0

50

100

150

200

1 2 3 4 5 6

No MS, All against all, 1 device

Actual Estimated

0

50

100

150

1 2 3 4 5 6

No MS, Only alive, 1 device

Actual Estimated

0

100

200

1 2 3 4 5 6

Mutant Schema, All against all, 1

device

Actual Estimated

0

50

100

150

1 2 3 4 5 6

Mutant Shema, Only alive, 1 device

Actual Estimated

677 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

5. Conclusion

This paper introduces a novel model that integrates advanced features of gene mutation

techniques to effectively test mobile applications. The testing model proposed parses the

mobile applications and checks for any existing runtime bugs which terminates the

application without any intimation to the end user. Frequently used Android applications are

considered for extensive testing. Different scenarios are used to identify the run time

errors.The proposed model is developed using Xamarin mobile application development

tool. Adequate APIs and interfaces for Xamarin applications are developed using Python.

The experimental results prove that the proposed testing solution effectively parses and

identifies the runtime errors effectively.

References
1. Gartner, Gartner says sales of smartphones grew 20 percent in third quarter of 2014.

https://www.gartner.com/newsroom/id/2944819/

2. Google Play, (2015). https://play.google.com/store.

3. Aljedaani, W., Mkaouer, M. W., Ludi, S., Ouni, A., & Jenhani, I. (2022). On the identification

of accessibility bug reports in open source systems. In Proceedings of the 19th International

Web for all Conference, 1-11.

4. Johnson, J., Mahmud, J., Wendland, T., Moran, K., Rubin, J., & Fazzini, M. (2022, March). An

empirical investigation into the reproduction of bug reports for android apps. In IEEE

International Conference on Software Analysis, Evolution and Reengineering (SANER), 321-

322.

5. Cui, D., Fan, L., Chen, S., Cai, Y., Zheng, Q., Liu, Y., & Liu, T. (2022). Towards characterizing

bug fixes through dependency-level changes in apache java open source projects. Science China

Information Sciences, 65(7), 172101. https://doi.org/10.1007/s11432-020-3317-2.

6. Tan, S. H., & Li, Z. (2020). Collaborative bug finding for android apps. In Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering, 1335-1347.

7. Li, Z., & Tan, S. H. (2020). Bugine: a bug report recommendation system for Android apps.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering:

Companion Proceedings, 278-279.

8. Li, S., Guo, J., Fan, M., Lou, J. G., Zheng, Q., & Liu, T. (2020). Automated bug reproduction

from user reviews for android applications. In Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering: Software Engineering in Practice, 51-60.

9. Cao, H., Meng, Y., Shi, J., Li, L., Liao, T., & Zhao, C. (2020). A survey on automatic bug

fixing. In 6th International Symposium on System and Software Reliability (ISSSR), 122-131.

10. Srinivasa Rao, M., Praveen Kumar, S., & Srinivasa Rao, K. (2023). Classification of Medical

Plants Based on Hybridization of Machine Learning Algorithms. Indian Journal of Information

Sources and Services, 13(2), 14–21.

11. Tian, Y., Yu, S., Fang, C., & Li, P. (2020). Furong: fusing report of automated android testing

on multi-devices. In Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering: Companion Proceedings, 49-52.

12. Adhikari, T. M., & Wu, Y. (2020). Classifying software vulnerabilities by using the bugs

framework. In 8th International Symposium on Digital Forensics and Security (ISDFS), 1-6.

13. Bhatia, A., Wang, S., Asaduzzaman, M., & Hassan, A. E. (2020). A study of bug management

using the Stack Exchange question and answering platform. IEEE Transactions on Software

Engineering, 48(2), 502-518.

14. Nakano, D., Yin, M., Sato, R., Hindle, A., Kamei, Y., & Ubayashi, N. (2020). A Quantitative

 An Innovative Testing Model Using… Muhammad Arshad Javed et al. 678

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

Study of Security Bug Fixes of GitHub Repositories. arXiv preprint arXiv:2012.08053.

15. Lee, D. G., & Seo, Y. S. (2020). Improving bug report triage performance using artificial

intelligence based document generation model. Human-centric Computing and Information

Sciences, 10(1), 26. https://doi.org/10.1186/s13673-020-00229-7.

16. Pushpalatha, M. N., Mrunalini, M., & Sulav Raj, B. (2020). Predicting the priority of bug

reports using classification algorithms. Indian Journal of Computer Science and

Engineering, 11(6), 811-818.

17. Jung, J., Kim, H. J., Cho, S. J., Han, S., & Suh, K. (2019). Efficient Android Malware Detection

Using API Rank and Machine Learning. Journal of Internet Services and Information

Security, 9(1), 48-59.

18. Cide, Felip, José Urebe, and Andrés Revera."Exploring Monopulse Feed Antennas for Low

Earth Orbit Satellite Communication: Design, Advantages, and Applications." National Journal

of Antennas and Propagation 4.2 (2022): 20-27.

19. Mukherjee, D., & Ruhe, G. (2020). Analysis of compatibility in open source android mobile

apps. In IEEE Seventh International Workshop on Artificial Intelligence for Requirements

Engineering (AIRE), 70-78.

20. Mazuera-Rozo, A., Trubiani, C., Linares-Vásquez, M., & Bavota, G. (2020). Investigating types

and survivability of performance bugs in mobile apps. Empirical Software Engineering, 25,

1644-1686.

21. Wang, Y., Chen, B., Huang, K., Shi, B., Xu, C., Peng, X., & Liu, Y. (2020). An empirical study

of usages, updates and risks of third-party libraries in java projects. In IEEE International

Conference on Software Maintenance and Evolution (ICSME), 35-45.

22. Zhang, T., Hartmann, B., Kim, M., & Glassman, E. L. (2020). Enabling data-driven api design

with community usage data: A need-finding study. In Proceedings of the CHI Conference on

Human Factors in Computing Systems, 1-13.

23. Du, X., Zhou, Z., Yin, B., & Xiao, G. (2020). Cross-project bug type prediction based on

transfer learning. Software Quality Journal, 28(1), 39-57.

24. Wu, Q., He, Y., McCamant, S., & Lu, K. (2020). Precisely characterizing security impact in a

flood of patches via symbolic rule comparison. In the Annual Network and Distributed System

Security Symposium (NDSS'20).

25. Chowdhary, M. S., Aishwarya, R., Abinay, A., & Harikrishna, P. (2020). Comparing machine-

learning algorithms for anticipating the severity and non-severity of a surveyed bug.

In International Conference on Smart Technologies in Computing, Electrical and Electronics

(ICSTCEE), 504-509.

26. Park, M., You, G., Cho, S.J., Park, M., & Han, S. (2019). A Framework for Identifying

Obfuscation Techniques applied to Android Apps using Machine Learning. Journal of Wireless

Mobile Networks, Ubiquitous Computing, and Dependable Applications, 10(4), 22-30

27. Jha, A. K., Lee, S., & Lee, W. J. (2019). Characterizing Android-specific crash bugs.

In IEEE/ACM 6th International Conference on Mobile Software Engineering and Systems

(MOBILESoft), 111-122.

28. Gu, Z., Wu, J., Liu, J., Zhou, M., & Gu, M. (2019). An empirical study on api-misuse bugs in

open-source c programs. In IEEE 43rd annual computer software and applications conference

(COMPSAC), 1, 11-20.

29. Activity Testing: What to Test, 2015, http://developer.android.com/tools/

testing/activity_testing.html#WhatToTest

30. Kong, P., Li, L., Gao, J., Bissyandé, T. F., & Klein, J. (2019). Mining android crash fixes in the

absence of issue-and change-tracking systems. In Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis, 78-89.

31. Catolino, G., Palomba, F., Zaidman, A., & Ferrucci, F. (2019). Not all bugs are the same:

Understanding, characterizing, and classifying bug types. Journal of Systems and Software, 152,

679 Muhammad Arshad Javed et al. An Innovative Testing Model Using…

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

165-181.

32. Petke, J., Harman, M., Langdon, W. B., & Weimer, W. (2014). Using genetic improvement and

code transplants to specialise a C++ program to a problem class. In Genetic Programming: 17th

European Conference, EuroGP 2014, 137-149.

33. Wu, F., Weimer, W., Harman, M., Jia, Y., & Krinke, J. (2015). Deep parameter optimisation.

In Proceedings of the Annual Conference on Genetic and Evolutionary Computation, 1375-

1382.

34. JONNERBY, JAKOB, A. BREZGER, and H. WANG. "Machine learning based novel

architecture implementation for image processing mechanism." International Journal of

communication and computer Technologies 11.1 (2023): 1-9

35. Aydalga, S. C., Doğan, S., & Özkurt, A. (2020). Localisation and Museum Artifact Visual and

Audio Presentation Using Bluetooth Beacon Technology. Natural and Engineering

Sciences,5(2), 110-121.

36. Deng, L., Offutt, J., Ammann, P., Mirzaei, N. (2017).Mutation operators for testing Android

apps. Information and Software Technology, 81, 154-68.

37. Escobar-Velásquez, C., Linares-Vásquez, M., Bavota, G., Tufano, M., Moran, K., Di Penta, M.,

& Poshyvanyk, D. (2020). Enabling mutant generation for open-and closed-source Android

apps. IEEE Transactions on Software Engineering, 48(1), 186-208.

38. Deng, L., Dehlinger, J., & Chakraborty, S. (2020). Teaching software testing with free and open

source software. In IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), 412-418.

39. Chaparro, O., Bernal-Cárdenas, C., Lu, J., Moran, K., Marcus, A., Di Penta, M., & Ng, V.

(2019). Assessing the quality of the steps to reproduce in bug reports. In Proceedings of the

27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 86-96

40. Rodríguez-Trujillo ID. Mutation Testing Techniques for Mobile Applications.

