
Nanotechnology Perceptions 20 No.S2 (2024) 943–952

Campus Grid Deployment with Automation

Okta Nurika1, Low Tang Jung2, Ahmed Abba Haruna3

1Green Education Centre, Faculty of Computing and Meta-Technology, Universiti

Pendidikan Sultan Idris (Sultan Idris Education University), Tanjung Malim, 35900 Perak,

Malaysia, oktanurika@meta.upsi.edu.my
2Computer and Information Sciences Department, Universiti Teknologi PETRONAS, 32610

Seri Iskandar, Perak, Malaysia, lowtanjung@utp.edu.my
3College of Computer Science and Engineering, University of Hafr Al Batin, Saudi Arabia,

aaharuna@uhb.edu.sa

Campus grid is a feasible deployment of grid computing since campus environment is equally

controlled and the managerial permission is simpler than any other industries. The usability of grid

computing is also potentially high, because of the numerous demands from students or researchers

in need of high-end computational power and data storage. However, automated efficient way of

campus grid platform deployment has never been disclosed, therefore we propose a methodology

to deploy a campus grid with automation based on the desktop-grid architecture. Some related

issues and challenges that are currently being addressed, with improvements further to be explored,

are presented in this paper. Large scale campus grid deployment in this campus involving multiple

computer labs and hundreds of computers in total was accomplished, by combining both automation

scripts and manual intervention. The chosen campus grid software system is Berkeley Open Infra-

structure for Network Computing (BOINC). This practice is expected to guide future BOINC

campus grid administrators to establish a working grid computing system, in order to provide grid-

based computing and storage resources for running especially heavy simulation programs.

Keywords: AutoIt, BASIC script, BOINC, Campus Grid, Centralized Software Deployment,

EMCO, Malaysian Grid.

1. Introduction

Grid Computing is an infrastructure that brings out integrated computing resources and

services through network connections as defined by [1]. According to [2], generally there are

two types of grid infrastructure, namely computational and data grid. Computational grid is a

hardware and software framework to deliver dependable, consistent, pervasive, and affordable

access to high-end computation capability [3], while data grid is “an infrastructure that

manages huge amount of data files and provides resources across geographically distributed

collaboration” [4].

The growth of Grid Computing trend in Malaysia has been accumulating since 2005, where

 Campus Grid Deployment with.... Okta Nurika et al. 944

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

the Malaysian government has put Grid Computing development under technology agenda of

Ninth Malaysia Plan [5]. To prepare for this agenda development, MYREN (Malaysian

Research & Education Network) has built a high speed network that chained twelve Malaysian

Universities [6], which include Universiti Malaya (UM), Universiti Putra Malaysia (UPM),

Universiti Kebangsaan Malaysia (UKM), Universiti Sains Malaysia (USM), Universiti

Teknologi Malaysia (UTM), Universiti Malaysia Sarawak (Unimas), Universiti Malaysia

Sabah (UMS), Multimedia University (MMU), Universiti Teknologi PETRONAS (UTP),

Universiti Tenaga Nasional (Uniten), Universiti Utara Malaysia (UUM), and Universiti

Teknologi Mara (UiTM).

In June 2005, MYREN then held a roadshow where Universiti Malaya became the first

Malaysian University to build campus grid infrastructure. This campus grid project was then

named GERANIUM (Grid-Enabled Research Network and Infostructure of University of

Malaya) [7].

Hundreds of other institutions have followed suit around the world, however none has shared

the automated procedure to deploy campus grid platform, therefore we propose such method

in this paper that would assist future campus grid developers. We deployed our method of

automation at Universiti Teknologi PETRONAS (UTP) by utilizing the existing computers in

the departmental labs. Most of these computers are based on Windows operating system. The

labs are either located in the same or different buildings with different network segments, but

are able to communicate with each other through routers.

The outline of this chapter is as follows. Section 2 describes the grid platform chosen by UTP

campus grid team and the big picture of how the platform works. Section 3 informs the existing

gaps within worldwide campus grid deployments. Section 4 explains the automated way of

file sharing in our campus grid. Section 5 discusses our proposed automation to install and

configure necessary client-side software and its vital issues. Section 5 also presents the

workability test of the campus desktop-grid infrastructure. Finally, Section 6 concludes the

overall performance of our campus grid and its potential improvements in the future.

The Choice of Grid Platform

Based-on the properties of the existing computers to be deployed as compute nodes, the

desktop-grid software platform (such as Berkeley Open Infrastructure for Network Computing

BOINC) [8], can perform the grid operations on Windows and be efficient enough to run

100Mbps network card speed. BOINC was there chosen to fulfill this requirement.

BOINC was actually built for volunteer and desktop- grid computing [8]. It is volunteer based

be-cause the grid computing participants are willing to attach their computers to one or more

grid projects. In this case, the participant will register an account at the BOINC server then

install the BOINC client on their computer, so that it can be attached to one or more BOINC

server’s projects [9]. The participants can configure on the BOINC Client which projects they

want to attach to and how their computer resources can be shared by the project tasks [8].

Since BOINC is designed for grid and runs under Internet or public interconnection, hence it

is suitable to run in campus grid environment, because campus merely utilizes local network

without having to go all the way through the Internet.

Furthermore, BOINC provides several methods to enable applications (proprietary or open-

945 Okta Nurika et al. Campus Grid Deployment with....

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

source) to run on BOINC infrastructure. Applications written in C, C++, or Fortran can run in

BOINC framework without any modification [8]. In this case the application can be wrapped

using the BOINC Wrapper or GenWrapper (Generic Wrapper) for more functionalities [10].

For the BOINC Wrapper, it will understand how to run the application by reading an XML

file that holds the application’s attributes such as input, output, the fraction of job done by

each task, etc [10]. This information is necessary since the BOINC server will distribute the

tasks to the clients/compute nodes and based on the output generated by the clients, it will

validate and assimilate the results [11].

GenWrapper is an easy wrapper and supports functionality like complex control flows (loops,

branches, etc). Instead of reading an XML file to view the application’s attributes, it reads a

more generic POSIX-like shell script and use built-in commands like tar, awk, sed, zip, etc.

[12]. GenWrapper tackles the limitations of the traditional BOINC Wrapper that reads a stiff

XML file which can only describe the legacy tasks one after another. Gen-Wrapper is capable

to execute an arbitrary set of legacy applications [13].

For the our campus grid, GenWrapper is chosen to wrap application binaries which are mostly

compiled for Windows 32-bit machines. One of the first applications wrapped using

GenWrapper was the 2D EM (2 Dimension Electro-Magnetic) simulation program that

generates an output file of 146MB in size.

Application’s source code can also be altered by including BOINC API (Application

Programming Interface) which is a set of C++ functions in the C code’s header. A richer API

called DC-API is also available to provide more adapt-able API for BOINC-able applications

to work on multiple grid environments [15]. To adapt to multiple grid environments, DC-API

only supports a restricted master-worker programming model. Currently a DC-API sample

application named “uppercase” has been tested to work on our campus grid.

Related Campus Grid Deployments Gaps

A combinatorial large scale software deployment experiment was built by collaborating JMX

(Java Management eXtension) with ProActive [18]. Since they applied their framework under

Java environment, hence their approach is only applicable to Java based applications and it is

merely meant to distribute future applications in plan, or in other words, it is not an appropriate

method to distribute an existing application. JMX delivers APIs for Java applications

management. While ProActive is utilized by [18] to make the applications granular, hence

they can be computed in parallel. Additionally, ProActive provides remotely accessible JMX

connector in safe and asynchronous manner. Unfortunately, paper [18] does not brief how they

managed to mass distribute/copy the necessary files to each client computers.

Furthermore, the application bundled with JMX and ProActive is then deployed over OSGi

(Open Services Gate-way initiative) gateway infrastructures that provide management of

services. Each gateway defines unique hardware specifications such as CPU type, type of

operating system, or even the usage of resources. The ways to deploy these OSGi gateways

are divided into two; we can deliver the same unit plan for all gateways or we give each

gateway a different unit plan. Moreover, the work by [18] succeeded to reduce as much as

50% of service installation time com-pared to standard JMX-Java RMI (Remote method

Invocation) synchronous connector.

 Campus Grid Deployment with.... Okta Nurika et al. 946

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

A distributed computing platform utilizing vehicle charging stations was deployed in

SUSTech campus [19]. It managed to reduce computational complexity by decomposing the

scheduling problem into multiple sub-problems. Theoretically, this method is similar to

BOINC’s job scheduling, however the requirement of custom-made stations makes this

solution expensive and difficult to obtain and deploy – compared to BOINC which is based on

open-source software.

An advocacy of campus grid in African continent is led by Kenya that concludes various

benefits of campus grid in collaborative research, such as shared instruments, peer sharing,

and remote visualization [20]. However, the technical procedure or know-how has not been

proposed. Therefore, our paper can fulfil this essential gap in implementation. On European

continent, Finnish Grid and Cloud Infrastructure2 (FGCI2) project is comprised of fourteen

(14) Finnish institutions that is assisting the local super-computers [21]. The provided services

revolve around High Performance Computing and Cloud Computing, which cater for various

natural scientific fields, engineering, and mathematics. Despite developing open-source

software, FGCI2 does not disclose the procedure to establish their grid infrastructure, thus this

gap signifies a common lacking of public information about grid development that justifies

the contribution of this paper.

A part of campus grid design is job scheduling, where it deals with sequence of task

allocations. A scheduling method that targets campus grid with inalienable resources has been

developed, but its performance was only compared with simple First Come First Served

(FCFS) method [22], hence doubting its general suitability for campus grid. Additionally, the

overall grid establishment method is not disclosed, therefore the gap remains.

Related to job scheduling is another component of campus grid, which is workflow. It utilizes

container-based schedulers in order to minimize performance loss, and hence gains higher

resources efficiency. The proposed container schedulers architecture using Makeflow and

Mesos has been able to achieve higher transfer throughput and resource utilization [23].

Similar to other reviewed campus grid works, the overall campus grid platform development

procedure is not shared. Regardless of it, this work may be integrated to our proposed BOINC-

based campus grid.

In spite of two (2) decades of campus grid history, no institution has publicly shared the

automated efficient way of campus grid platform development. Thus, this paper will contribute

to that area by detailing the necessary steps to automate files distributions and software

configuration.

Proposed Client Files Distribution in Networked Campus Grid

Distributing the necessary files and installing the BOINC client in our campus grid

environment was a tedious process since there were more than 40 labs to be installed, and

every lab had 30 to 40 computers to be clients/compute nodes. On the other hand, the campus

grid team consisted of only 25 student volunteers with the average attendance of 15 students

for every installation session.

To accelerate the lab installation, therefore a centralized file distribution and software

execution was needed. We utilized proprietary software named EMCO Remote Deployment

to send and execute the necessary client files in a centralized manner. It is a Windows-based

947 Okta Nurika et al. Campus Grid Deployment with....

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

software and it automates the software management including the distribution, installation,

uninstallation, and update [16].

EMCO Remote Deployment will firstly scan the domain network to map the computers

according to their do-main membership. Afterwards, specific domain or specific computers in

a domain can be selected to receive the application files. And eventually EMCO Remote

Deployment remotely executes the necessary files using its remote command prompt feature.

In our case, it remotely executes the BOINC client software. It can distribute the files with-out

the client computers be logged-in. The login is however needed once the files are to be

executed using remote command prompt.

The drawback of using EMCO Remote Deployment is that it needs a considerable amount of

time to scan all domains. For our case with a lab of 40 computers, it took more than 15 minutes

to scan the domain. Later we found out that with a team of 15 students, it was faster to

distribute the necessary files using traditional Windows-based file transfer via shared folder.

In a nutshell, with around 40 computers and 15 team members, it was more effective to

distribute the application using traditional Windows shared folder than to have the team to

manually browse and copy the files. However, for the case where the number of client

computers much exceed the number of team members or no team member at all (single

administrator), it is worth to consider using EMCO Remote Deployment software.

Proposed Campus Grid Client Software Auto Configuration

EMCO Remote Deployment has a limitation. It executes the client application only in one shot

i.e. it only initiates the application but without the capability to proceed the installation process

once the software’s Graphical User Interface (GUI) prompts out. Thus, it is not possible to

remotely click the on-waiting “Next” buttons of the BOINC client software and other

subsequent on-screen configurations.

Furthermore, the BOINC client software needs to be configured after installation, for example

it needs to connect to the BOINC server’s hostname, login to the BOINC server, and attach

itself to a project. These are additional tasks to be remotely auto-configured for each client

computer.

To execute the above automated tasks, Windows scripting was the feasible solution. A

freeware named AutoIt provides the capability to automate software installation and GUI

configuration using BASIC-like script to simulate keystrokes, mouse movement, and

window/control manipulation [17]. This AutoIt script can be easily converted to Windows

executable file (.exe) using the conversion feature of AutoIt.

Two AutoIt scripts were created for our mission. The first one (boinc.exe) was to control the

BOINC client software on-screen installation, and the second script (boincmgr.exe) was to

configure the BOINC client software after its installation for it to connect to the BOINC server

and attach to project. Below are the flow charts of the two AutoIt scripts.

 Campus Grid Deployment with.... Okta Nurika et al. 948

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

Fig. 1. BOINC Client Installation AutoIt Script Flow Chart

The procedure for the previous Figure 1 flow chart is explained as follows:

1. Require admin authorization to install Boinc Client.

2. Start the installation wizard.

3. Accept the license agreement to continue install software.

 If (Accept)

 Continue the installation process to step 4

949 Okta Nurika et al. Campus Grid Deployment with....

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

 Else

 Terminate the installation process

4. Start the software installation setup.

5. Select advance to choose some setup options.

6. Tick the “Allow all users on this computer to control Boinc” box.

7. Continue installation process.

8. Click finish after installation complete.

9. Restart the PC after finishing installation.

Next is the flow chart for the AutoIt script to configure the BOINC client software after

installation.

Fig. 2. Flow Chart of BOINC Client Configuration after Installation

 Campus Grid Deployment with.... Okta Nurika et al. 950

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

The procedure for the above Figure 2 flow chart is described below:

1. Open the Boinc Client Manager.

2. Click at Advanced View

3. Select tools.

4. Choose Add Project/Account Manager.

5. Select Add Project.

6. Click next to continue attach the project.

7. Insert Project URL.

8. Click next to create account.

9. Identify user account,

 If (new user)

 Insert: Email Address, Choose Password and Confirm Password

 Else (Existing user)

 Insert: Email Address and Password

10. Click next to complete the project attachment.

11. Click finish after successful attaching the project.

The BOINC client was called by the boinc.exe script. However, it was found that some client

computers have the installation process being blocked randomly In such cases, it was

necessary to click manually the relevant button or even to fill the GUI forms.

After the BOINC client proper installation, next script to execute via EMCO Remote

Deployment remote command prompt was the boincmgr.exe for calling the BOINC client

manager program to be configured based on the content of the boincmgr.exe script. In this

step, the process often stopped again somewhere, and the solution was the same as the

installation process; either we manually click the relevant button or even fill the GUI forms by

ourselves.

Another problem faced during the installation, was that although the “Allow all users on this

computer to control BOINC” box was checked at the BOINC client installation phase, the

BOINC client could only work on Administrator account and failed on Guest account. To

escalate Guest account for it to run BOINC client, we execute the following command at

command prompt under Administrator account:

 net localgroup boinc_admins “guest” /add

Subsequently, the client computer was restarted for the command to take effect. It was initially

attempted to execute the above command with EMCO Remote Deployment remote command

prompt but it did not succeed, thus this function was executed manually on each computer to

accomplish the task.

951 Okta Nurika et al. Campus Grid Deployment with....

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

At last, the attachment of the BOINC client computers to the BOINC server was tested. It was

done by submitting a job from the BOINC server, and the event log of the BOINC client

computer was checked to verify if it was receiving the task. Additionally, any error message

was checked for existence.

In brief, the proposed deployment with automation of campus grid involves the steps below:

1. Login to all client computers as Administrator

2. Distribute necessary application files (boinc.exe script, boincmgr.exe script, and

BOINC installer) using Windows shared folder or EMCO Remote Deployment

3. Execute boinc.exe using EMCO Remote Deployment remote command prompt

feature

4. Check on each computer if the BOINC client installation proceeds smoothly or be

stuck somewhere.

5. Restart the installed client computers

6. Login back as Administrator

7. Execute boincmgr.exe using EMCO Remote Deployment remote command prompt

feature

8. Check on each computer if it is correctly attached to the BOINC server.

9. On each client computer, open command prompt then type: net localgroup

boinc_admins “guest” /add

10. Restart the computer to take effect of the command and then login as Guest account

11. Login to the BOINC server and submit multiple jobs

12. Check on each BOINC client computers if they properly accept tasks

2. Conclusion

The effort and time invested to deploy campus grid with automation are worthwhile as the grid

is highly supporting students/researchers and lecturers to execute simulation programs that

require intensive computation and data storage.

Improvements on the mass BOINC client deployment are aspiring us, especially to automate

the remote login to each client computer, to speed up overall installation process.

The overall proposed method to deploy campus grid infrastructure copes with the distribution,

execution, and remote management. And it is flexible because it applies easily to existing

application without any necessity to alter the application code, thus the programming language

of the application can be preserved.

References
1. Wang, J., Yang, Z., and Kou, W. (2007). A Solution for Building Campus Grid. First IEEE

 Campus Grid Deployment with.... Okta Nurika et al. 952

Nanotechnology Perceptions Vol. 20 No.S2 (2024)

International Symposium on Information Technologies and Applications in Education.

ISITAE '07 [Paper]. pp. 545-548.

2. Al-iesawi, A. M. and Samat, M. I. M. (2010). A case study on Implementati on of Grid

Computing to Academic Institution. 2010 International Symposium in Information

Technology (ITSim) [Paper]. 3, pp. 1525-1530.

3. Foster, I. and Kesselman, C. (1999). The Grid: Blueprint for a New Computing

Infrastructure. San Fransisco: Morgan Kauffman.

4. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., and Tuecke, S. (2009). The Data

Grid：Towards An Architecture For The Distributed Management And Analysis Of Large

Scientific Datasets. Journal of Network and Computer Applications [Paper], 23(3), pp. 187-

200.

5. Ninth Malaysian Plan. http://www.parlimen.gov.my/news/eng-ucapan_rmk9.pdf

6. MYREN High Speed Network.

http://www.myren.net.my/sites/default/files/story/2010/07/HamdanIsmail.pdf

7. Por, L. Y., Su, M. T., Ling, T. C., Liew, C. S., Ang, T. F., and Phang, K. K. (2006). Issues

of Establishing a Campus-wide Computational Grid Infrastructure in the GERANIUM

Project. Proceedings of the International Conference on Networking, International

Conference on Systems and International Conference on Mobile Communications and

Learning Technologies (ICNICONSMCL’06) [Paper].

8. BOINC Intro. (2018). http://boinc.berkeley.edu/trac/wiki/BoincIntro.

9. BOINC Basic Concepts. (2022). http://boinc.berkeley.edu/trac/wiki/BasicConcepts.

10. BOINC Wrappers. (2022). http://boinc.berkeley.edu/trac/wiki/WrapperApp.

11. BOINC Job Processing. (2022). http://boinc.berkeley.edu/trac/wiki/JobIntro.

12. GenWrapper. (2023). http://genwrapper.sourceforge.net/.

13. Marosi, A. C., Balaton, Z., and Kacsuk, P. (2009). GenWrapper: A Generic Wrapper for

Running Legacy Applications on Desktop Grids. 3rd Workshop on Desktop Grids and

Volunteer Computing Systems (PCGrid 2009) [Paper].

14. BOINC API. (2022). http://boinc.berkeley.edu/trac/wiki/BasicApi.

15. The DC-API. (2022). http://www.desktopgrid.hu/index.php?page=34

16. EMCO. (2023). http://emcosoftware.com/remote-deployment.

17. AutoIt Introduction. (2022). http://www.autoitscript.com/autoit3/docs/introduction.htm.

18. Baude, F., Contes, V. L., and Lestideau, V. (2007). Large-scale Service Deployment -

Application to OSGi. Third International Conference on Autonomic and Autonomous

Systems (ICAS 2007) [Paper]. pp. 19-24.

19. Shang, Y., Liu, M., Shao, Z., Jian, L. (2020). A centralized vehicle-to-grid scheme with

distributed computing capacity engaging internet of smart charging points: Case study.

International Journal of Energy Research, Special Issue: Smart Energy Technologies, vol.

45, issue 1, pp. 841-863.

20. Murumba, J. and Micheni, E. (2017). Grid Computing For Collaborative Research Systems

In Kenyan Universities. The International Journal of Engineering and Science (IJES), vol. 6,

issue 4, pp. 24-31.

21. Shillanpaa, A. and Salmela, V. (2019). FGI - Finnish Grid Infrastructure.

https://wiki.eduuni.fi/display/cscfgi/FGI+-+Finnish+Grid+Infrastructure.

22. Uzdenov, T. A. (2022). A new approach for dispatching task flows in GRID systems with

inalienable resources. Journal of Edge Computing, vol. 1, issue 1, pp. 68-80.

23. Zheng, C., Tovar, B., and Thain, D. (2017). Deploying High Throughput Scientific

Workflows on Container Schedulers with Makeflow and Mesos. 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2017), pp. 130-

139, doi: 10.1109/CCGRID.2017.9.

