

The Use of Technology in Learning Mathematics in Indonesia: A Systematic Literature

Lola Mandasari¹, Awal Kurnia Putra Nasution¹, Elfi Rahmadhani¹, Septia Wahyuni¹, Rahmanita Zakaria¹, Srimuliati², Firmansyah B¹, Asnawi¹

¹Institut Agama Islam Negeri Takengon, Aceh, Indonesia ²Institut Agama Islam Negeri Langsa, Aceh, Indonesia Email: lolamandasari@gmail.com

This article presents a systematic literature review on the use of technology in learning mathematics in Indonesia. Through a comprehensive analysis of existing research, this research aims to explore the types of technology commonly used, assess the Effectiveness of technology integration, uncover the associated benefits, and identify the challenges faced in using technology for learning mathematics in Indonesia. This study uses a Systematic Literature Review (SLR) to examine the use of technology in learning mathematics in Indonesia. Computers, online learning environments, mobile apps, virtual reality, augmented reality, games, and e-comics have all been mentioned in studies as tools for teaching mathematics. There hasn't been any specific research on graphing calculators, interactive whiteboards, virtual manipulatives, or 3D printing in Indonesian mathematics education, in any case. Incorporating technology in learning mathematics provides benefits and opportunities by enabling an interactive and dynamic learning experience. Technology also provides access to virtual manipulatives, simulations, and multimedia resources that support students' conceptual understanding and problem-solving skills. However, the effective use of technology also faces challenges, such as unequal access to technology and reliable internet connectivity across Indonesia. Teacher readiness and professional development are essential in using technology effectively, while considering cultural factors and adaptation of technology in the local context. Through this literature review, it is hoped that it can provide insight into integrating technology into mathematics education in Indonesia. These findings will contribute to knowledge about the use of technology in learning mathematics and inform educators, policymakers, and curriculum developers about the types of technology that are commonly used, their Effectiveness, benefits, and challenges faced in their implementation.

Keywords: Technology, Learning Mathematics, Indonesia, A Systematic Literature Review.

1. Introduction

The integration of technology in education has brought significant transformations, including in the field of learning mathematics. Technology offers unique opportunities to improve teaching and learning practices (Hofer et al., 2021), particularly in a subject such as mathematics which often requires visualization, interactive exploration, and problem-solving skills (Al-Mutawah et al., 2019). In the Indonesian context, with the increasing emphasis on educational advancement and the expanding availability of technology, exploring technology in mathematics learning is becoming essential to encourage innovative and effective educational practices. This article presents a systematic literature review on using technology in learning mathematics in Indonesia. The emphasis on advancing education and increasing the availability of technology is increasing. Therefore, it is crucial to explore the potential use of technology in mathematics learning to encourage innovation and Effectiveness in education. The use of technology in learning mathematics in Indonesia has received increasing attention in recent years (Pratiwi & Wiarta, 2021). Advances in technology and the availability of various digital devices have opened up new educational opportunities (Ferri et al., 2020), including in learning mathematics. In facing these challenges and opportunities, many studies have been conducted to investigate how technology integration in mathematics learning has progressed in Indonesia.

The incorporation of technology in learning mathematics raises various benefits and opportunities. This enables interactive and dynamic learning experiences, enabling students to engage with mathematical concepts more meaningfully (Huang et al., 2019; Zengin, 2019). Technology provides access to virtual manipulatives, simulations, and multimedia resources that facilitate visual representation and hands-on exploration, thus supporting students' conceptual understanding and problem-solving abilities (Anderson-Pence, 2020; Shin et al., 2023). In addition, technology can facilitate individual and personalized learning, accommodating a variety of learning styles and speeds (Fonseca & García-Peñalvo, 2019). However, despite the potential benefits, the effective use of technology in mathematics learning also presents challenges. Unequal access to technology and reliable internet connectivity in various regions in Indonesia is obstacles to equitable implementation. Teacher readiness and professional development play a critical role in utilizing technology effectively, which requires educators to be proficient in content knowledge and specific pedagogical strategies for technology integration (Bowman et al., 2022; Love et al., 2020). To guarantee that technology is successfully applied in Indonesian mathematics classes, cultural considerations and the technology's ability to adapt to the local environment must also be considered.

By conducting a systematic literature review, this study aims to contribute to existing knowledge about the use of technology in learning mathematics in Indonesia. These findings will inform educators, policymakers, and curriculum developers about the types of technologies commonly used, their Effectiveness, the benefits associated with their use, and the challenges faced in implementing them. This knowledge can guide future efforts to design effective strategies for integrating technology in mathematics education, aiming to improve students' mathematics learning outcomes and nurture their digital literacy skills. This systematic literature review focuses on using technology in mathematics learning in Indonesia. By answering research questions about the types of technology used, their Effectiveness, the

benefits gained, and the challenges faced, this research sheds light on the current state of technology integration in mathematics education in the Indonesian context. These results will add to the ongoing discussion about using technology in mathematics education and give educators and stakeholders crucial information for creating successful and fulfilling learning opportunities for students in Indonesia.

2. Literature Review

The theory of technology integration in mathematics education emphasizes the effective use of technological tools and resources to enhance the teaching and learning experience in mathematics. It recognizes the potential of technology to support students' conceptual understanding, problem-solving skills, and mathematical reasoning and create meaningful and engaging learning environments. Various types of technology can be used in learning mathematics, such as computers, graphing calculators, interactive whiteboards, virtual manipulatives, online learning platforms, mobile applications, 3D printing, virtual reality, and augmented reality (Buentello-Montoya et al., 2021; Cai et al., 2020; Chen et al., 2020; Moreno-Guerrero et al., 2020). This technology provides several advantages, such as increasing student engagement, providing access to a wide variety of math resources, and helping to develop students' problem-solving skills (Attard & Holmes, 2020; Dockendorff, 2019; Shé et al., 2023). Even so, there are several challenges, such as high technology costs, unequal access to technology among students, and students' convenience. However, the benefits of using technology in learning mathematics still outweigh the risks. With careful planning and implementation, technology can be a powerful tool in helping students learn mathematics effectively.

3. Methodology

This study uses the Systematic Literature Review (SLR) method to examine the use of technology in learning mathematics in Indonesia. SLR is a systematic and comprehensive research method for identifying, evaluating, and integrating research evidence relevant to a particular topic (Xiao & Watson, 2019). A literature search was conducted on Google Scholar and Scopus using the following keywords: "learning mathematics", "education", "technology", and "Indonesia". Data search was carried out in June 2023. The papers you are looking for must meet the following inclusion criteria: (1). Published in scientific journals; (2) speak English or Indonesian; and (3) discuss the use of technology in learning mathematics in Indonesia. The exclusion criteria are research not conducted in Indonesia and book chapters.

The identified articles were analysed to determine their quality. Articles that meet the following criteria are considered to be of high quality: (1) Articles have clear research objectives and methods; (2) Articles have valid and reliable research results; and (3) Articles have conclusions that are relevant to the research objectives.

Research questions (RQ):

- 1. What types of technology are used in learning mathematics in Indonesia?
- 2. How effective is the technology used in learning mathematics in Indonesia? *Nanotechnology Perceptions* Vol. 20 No.S3 (2024)

- 3. What are the advantages or benefits of using technology in learning mathematics in Indonesia?
- 4. What are the challenges in using technology in learning mathematics in Indonesia?

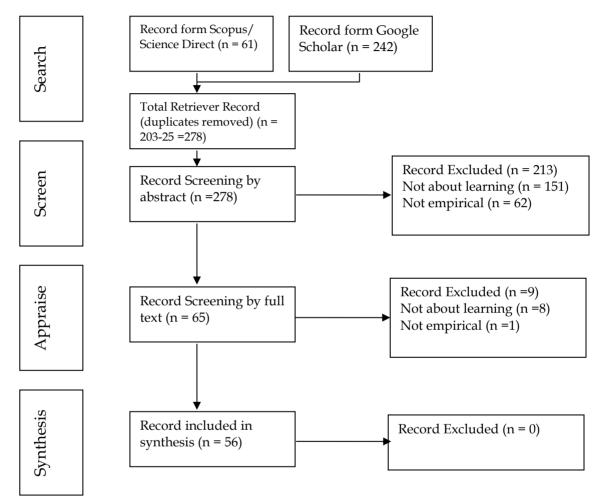


Figure 1. Flowchart article selection process, adapted from (Xiao & Watson, 2019)

4. Results

1. The type of technology used in learning mathematics in Indonesia.

Based on the data, 13 references discuss using computers in learning mathematics. In addition, there are 14 references discussing the use of online learning platforms, one reference regarding the use of mobile applications, and two references discussing the use of virtual reality. There are 14 references discussing the use of augmented reality, while games and e-comics each have one reference. However, no references were found discussing the use of graphing calculators, interactive whiteboards, virtual manipulatives, and 3D printing in mathematics

learning in Indonesia. Complete information about the types of technology used in learning mathematics can be found in Table 1.

Table 1. type of technology

Type of technology	Reference
Computers	Asdarina & Fauzi (2023)
	Firdaus (2016)
	Gunawan (2014)
	Juandi et al. (2021)
	Munawarah (2020)
	Novikasari (2012)
	Pratidiana (2021)
	Rini (2012)
	Rizki (2012)
	Sulistyani (2020)
	V. W. Putri & Suripah (2021)
	Wirawan et al., (2020)
	Zayyadi et al., (2017)
Graphing calculators	-
Interactive whiteboards	-
Virtual manipulatives	-
Online learning platforms	Abdullah et al. (2020)
	Azhari & Fajri (2022)
	Bhatti & Miranda (2020)
	Fredlina et al. (2021)
	Hidayati (2021)
	Irrawan et al. (2022)
	M. Huda (2020)
	Marfuah et al. (2022)
	Mayasari et al. (2023)
	Milah et al. (2022)
	Rahmawati (2021)

	Rusli et al. (2020)
	Sihotang & Ramadhani (2021)
	Suroyo & Ismarwati (2006)
Mobile apps	Widiawati et al. (2019)
3D printing	-
Virtual reality	Sulistyowati & Rachman (2017)
	Zulfikri (2023)
Augmented reality	Adriansa (2021)
	Hanafi (2019)
	Hernita (2023)
	Khairunnisa & Aziz (2021)
	M. P. Putri et al. (2014)
	N. Huda & Purwaningtias (2017)
	Pranata et al. (2023)
	Pratama et al. (2023)
	Rusdi & Syahlan (2019)
	Sabon et al. (2022)
	Suliyono et al. (2022)
	Syahida et al. (2020)
	Tiyasari & Sulisworo (2021)
	Yang et al. (2022)
Game	Sukajaya et al. (2016)
e-comic	Adeliyanti et al., (2018)

2. The Effectiveness of technology used in learning mathematics in Indonesia.

The data presented in Table 2 highlights the Effectiveness of use in learning mathematics in Indonesia. Several studies indicate positive results when utilizing technology in the learning process. For instance, the STEM-based inquiry model effectively improved students' critical thinking skills (Pahrudin, 2021). Integrating media in mathematics learning for Grade VII, students has been effective in SMP Negeri 11 Gorontalo (Bito & Masaong, 2023). Adeliyanti et al. (2018) reported that using effective media in their research resulted in 81.25% of students completing the learning test successfully, with 94% expressing satisfaction with the practicality of the approach through a questionnaire.

Implementing the PjBL model also demonstrated Effectiveness, as evidenced by improved written exam results and successful completion of project assignments (Rarasati et al., 2022). Tong et al. (2021) found that visual representations in an enhanced learning environment significantly contributed to students' more effective math learning. Additionally, Milah et al. (2022) emphasized that technology played a vital role in fostering effective, creative, and innovative learning in mathematics, serving as an alternative medium for education. Moreover, Khotimah et al. (2021) observed positive learning outcomes among students in Indonesia through the implementation of STEM education. These findings collectively emphasize the beneficial impact of technology in enriching mathematics education and fostering a more effective and engaging learning environment.

Table 2. Effectiveness of technology

Effectiveness of technology	Reference
The STEM-based inquiry model demonstrated Effectiveness in enhancing students' critical thinking skills.	Pahrudin (2021)
Integrating media in mathematics learning for Grade VII students at SMP Negeri 11 Gorontalo proved effective.	Bito & Masaong (2023)
Using effective media in this research, involving 32 students in the learning test, resulted in an 81.25% completion rate. Additionally, the questionnaire indicated that 94% of students found it practical.	Adeliyanti et al. (2018)
The Effectiveness of implementing the PjBL model is evident from the written exam results and the completion of project assignments.	Rarasati et al. (2022)
Visual representations in an enriched learning environment enable students to learn math more effectively.	Tong et al. (2021)
The study's findings highlight the essential role of technology in fostering more effective, creative, and innovative mathematics learning, providing an alternative medium for education.	Milah et al. (2022)
STEM education in Indonesia was effective in enhancing students' learning outcomes.	Khotimah et al. (2021)

3. Advantages or benefits of using technology in learning mathematics in Indonesia

Table 3. Displays data related to Advantages or benefits. According to Cahyono (2019), digital technology can potentially support teachers in facilitating the process of learning mathematics outdoors. Learning using flash animation helps students understand abstract mathematical concepts significantly, as revealed by Salim & Tiawa (2015). Providing better access to technology will help address some challenges associated with student engagement in mathematics learning at the secondary school level in Indonesia, as presented by Abidin, Mathrani, & Hunter (2017). Collaborative learning methods integrated with technology provide better results than individual learning methods, as found by Wawan et al. (2018).

Table 3. Advantages or benefits

Table 3. Advantages	or belieffes
Advantages or benefits	Reference
Teachers may benefit from using digital technology to aid with outdoor math instruction and learning.	Cahyono (2019)
Learning using flash animation immensely helps students understand abstract mathematics significantly.	Salim & Tiawa (2015)
Addressing issues with student involvement in mathematics learning in Indonesian secondary school groups will be more accessible by improving access to technology.	Abidin, Mathrani, & Hunter, (2017)
The collaborative learning approach that incorporates technology yields superior outcomes to the individual learning approach.	Wawan et al. (2018)

4. Challenges in the use of technology in Learning mathematics in Indonesia

The data presented in Table 4 highlights the challenges faced in using technology in mathematics education in Indonesia. The first challenge pertains to the lack of access to technology in certain schools, particularly in rural areas, which hinders the effective integration of technology into the learning process. Funding issues are also identified as a significant obstacle, especially for schools in rural areas with limited financial resources compared to their urban counterparts. Another challenge highlighted in the data is the inadequate training of teachers in utilizing technology for mathematics learning, which can impede the successful implementation of technology in the classroom. Lastly, the data indicate that school infrastructure plays a crucial role, and limited access to facilities such as internet connectivity and power outlets further hampers the use of technology in mathematics education. These challenges underscore the need for addressing various aspects, including accessibility, funding, teacher training, and infrastructure, to leverage technology effectively in mathematics learning in Indonesia.

Table 4. Challenges in the use of technology

Tuote II Chamenges in the	
Challenges in the use of technology	Reference
The lack of access to technology in several schools in Indonesia, especially in rural areas, makes it difficult to use technology in learning. In addition, funding issues are an obstacle, especially in schools in rural areas which may have limited funds compared to schools in urban areas.	Guntur et al. (2019)
Inadequate teacher training for the use of technology in mathematics learning.	Radiamoda (2022)
School infrastructure is limited in supporting the use of technology, including internet access and power outlets.	Abidin, Mathrani, Hunter, et al. (2017)

5. Discussion

1. The type of technology used in learning mathematics in Indonesia.

Based on the data found, several studies have discussed the use of technology in learning mathematics in Indonesia. In particular, there is research that examines the use of computers as a means of accessing interactive mathematics resources, simulations, and mathematics learning software. The article written by Xie et al. authors discusses the use of computer-assisted instruction (CAI) in mathematics education; they argue that CAI can be an effective tool for enhancing mathematics learning, and they provide evidence from research to support their claims (Xie et al., 2020). In an article by Zhang & Wang, the authors examined the impact of computer simulations on students' mathematical achievement. They found that students who used computer simulations had higher math achievements than students who did not use computer simulations (Zhang & Wang, 2020).

In addition, the use of online learning platforms has also become a concern in learning mathematics in Indonesia. This platform provides access to materials, exercises, and interactions facilitating online mathematics learning. This finding is consistent with research conducted by Holubowicz, which states that online interactive sessions provide access to materials, exercises, and interactions (Holubowicz, 2021). Other findings say that online learning has become a vital learning method for students (Mahoney & Hall McManus, 2022). From these findings, it can be concluded that online education has become necessary in learning in this era.

Furthermore, one study discusses the use of mobile applications in learning mathematics in Indonesia. Mobile applications are portable and personally accessible tools for students to deepen their understanding of mathematical concepts through interactive exercises and customized learning materials (Widiawati et al., 2019). In the context of learning mathematics in Indonesia, research also describes the use of Virtual Reality (VR) technology. Through 3D

simulations, visualizations, and more realistic visual experiences, students can experience immersive and interactive mathematics learning (Sulistyowati & Rachman, 2017; Zulfikri, 2023). In addition, augmented reality (AR) has also become the focus of research in learning mathematics in Indonesia. In several studies, AR is used as a technology that combines digital elements with the real environment, enabling students to interact with mathematical objects visually and interactively.

From these findings, it can be concluded that technology is increasingly used in learning mathematics in Indonesia to enhance student interaction and experience in understanding mathematical concepts. One of the technologies used is a mobile application, which allows students to study mathematics privately through interactive exercises and customized learning materials. In addition, Virtual Reality (VR) technology has also been used in mathematics learning. Through 3D simulations and more realistic visualizations, students can experience learning mathematics in a more immersive and interactive way. Virtual and augmented reality technologies increase student interactivity and interest in mathematics education (Demitriadou et al., 2020).

Meanwhile, Augmented Reality (AR) is also the focus of research in learning mathematics in Indonesia. AR allows students to interact visually with mathematical objects and integrate digital elements with natural environments, enriching learning experiences. The study conducted by Pellas & Kazanidis states that AR applications enable intuitive learning scenarios and enhance the user's interactive experience (Pellas & Kazanidis, 2019). Augmented reality allows students to interact visually with mathematical objects and integrate digital elements with natural environments (Chao & Chang, 2018). These findings show that technology has significantly contributed to learning mathematics in Indonesia by creating more engaging, interactive and effective learning experiences for students.

Furthermore, the research discusses using games in learning mathematics in Indonesia (Sukajaya et al., 2016). Mathematical games developed digitally can motivate students and make learning mathematics more fun while developing an understanding of mathematical concepts. In addition, there is also research that describes the use of e-comics in learning mathematics in Indonesia. E-comics present interesting mathematical content in electronic comics that can enrich students' understanding of mathematical concepts (Adeliyanti et al., 2018). However, no research studies were found discussing their use in learning mathematics in Indonesia for graphic calculators, interactive whiteboards, virtual manipulatives, and 3D printing.

Technologies such as computers, online learning platforms, mobile applications, virtual reality, augmented reality, games, and e-comics have been proven to increase students' understanding of mathematics, increase learning motivation, and create more exciting and interactive learning experiences. This technology also offers challenges in improving teacher skills, accessibility, and supporting infrastructure that must be considered in implementing effective mathematics learning with technology. The data type of technology shows that research on the use of technology for learning mathematics in Indonesia is still developing. Many studies have been conducted to examine the Effectiveness of using technology for learning mathematics (Cullen et al., 2020; Ran et al., 2022; Thurm & Barzel, 2020), But there is still much research that needs to be done to increase our understanding of the most effective

ways to use technology for mathematics learning.

Based on the available data, no research has been found that specifically addresses the use of technology such as graphic calculators, interactive whiteboards, virtual manipulatives, and 3D printing in mathematics learning in Indonesia. This shows that research and documentation related to using this technology in the context of learning mathematics in Indonesia is still limited. However, this also provides opportunities and challenges further to explore these technologies' use in learning mathematics. Further research and exploration are needed to understand the potential and benefits of using this technology to improve students' understanding and math skills in Indonesia.

2. The Effectiveness of technology used in learning mathematics in Indonesia.

The data shows a growing body of evidence to suggest that technology can be an effective tool for learning mathematics. However, it is essential to note that not all studies have found the same results. For example, some studies have found that technology can effectively improve students' critical thinking skills (Burbules et al., 2020; Kevin A. Artuz & B. Roble, 2021), while others have found that it has no significant impact.

Overall, the data suggest that technology can be an effective tool for learning mathematics, but more research is needed to determine the best ways to use it.

Here are some additional points to consider:

- 1. The type of technology used may impact its Effectiveness. For example, some studies have found that interactive learning environments can be more effective than traditional textbooks.
- 2. The way that technology is used may also impact its Effectiveness. For example, some studies have found that technology is more effective when used in a collaborative learning environment.
- 3. The individual student may also impact the Effectiveness of technology. For example, some students may be more motivated to learn with technology than others.

It is essential to consider all of these factors when determining whether or not to use technology in mathematics instruction.

3. Advantages or benefits of using technology in learning mathematics in Indonesia

The data shows several advantages or benefits to using technology in mathematics education. These include:

- 1. Technology can help to make mathematics more engaging and interactive. Technology can create simulations, animations, and other interactive learning experiences to help students visualize and understand mathematical concepts.
- 2. Technology can help to provide students with more individualized instruction. Technology can create personalized learning plans and activities tailored to each student's needs.

3. Technology can help to make mathematics more accessible to all students. Technology can give students access to resources and learning experiences they may not otherwise have.

The data also shows a positive relationship between the use of technology and student engagement in mathematics learning (Lo & Hew, 2021; Marpa, 2020). This suggests that providing better access to technology can help to improve student engagement in mathematics and lead to better learning outcomes.

It is important to note that technology is not a panacea for all mathematics education challenges. However, the data suggests that technology can be a valuable tool for improving student engagement and learning outcomes in mathematics.

Here are some additional points to consider:

- 1. The type of technology used is essential. Some technologies are better suited for certain types of learning activities than others.
- 2. The way that technology is used is also essential. For example, technology can deliver content, facilitate collaboration, or provide feedback.
- 3. The individual student also plays a role. Some students are more motivated to learn with technology than others.
- 4. It is essential to consider all these factors when determining how to use technology in mathematics instruction.
- 4. Challenges in the use of technology in Learning mathematics in Indonesia

The data shows some challenges to using technology in mathematics education in Indonesia. These challenges include:

- 1. Lack of access to technology. This is the most fundamental challenge, as it limits the opportunities for students to learn mathematics using technology.
- 2. Lack of funding. This can make it difficult for schools to purchase and maintain technology and limit the availability of training for teachers.
- 3. Inadequate teacher training. Even if schools have the technology, teachers may not be able to use it effectively if they do not have the training they need.
- 4. Inadequate infrastructure. Even if schools have the technology and the teachers are trained, the infrastructure may not be in place to support the use of technology.
- 5. Cultural factors. Some cultural factors can also challenge the use of technology in mathematics education.

These challenges can make it difficult for schools in Indonesia to integrate technology into their mathematics curriculum effectively. However, several things can be done to address these challenges, such as:

- 1. Increased funding for technology in schools. This would allow schools to purchase and maintain technology and provide funding for teacher training.
- 2. Initiatives to improve teacher training in the use of technology (Trust & Whalen, 2020). This would help teachers to learn how to use technology effectively in their mathematics lessons.
- 3. Investments in infrastructure to support the use of technology (Marks & Thomas, 2022). This would ensure that schools have reliable internet access and electrical outlets they need to use technology.
- 4. Education about cultural factors that may pose challenges to the use of technology. This would help to raise awareness of these challenges and how they can be addressed.

By addressing these challenges, schools in Indonesia can better use technology to improve mathematics education.

6. Conclusion

Based on the data findings, various types of technology have been used in learning mathematics in Indonesia. Several studies have addressed using computers to access interactive mathematics resources, simulations, and learning software. In addition, online learning platforms, mobile applications, virtual reality, augmented reality, games, and ecomics have also been used in mathematics learning. However, no research has been found that specifically addresses the use of graphing calculators, interactive whiteboards, virtual manipulatives, and 3D printing in the context of learning mathematics in Indonesia. The use of technology in learning mathematics can be an effective tool. However, it should be noted that research results are not always consistent. Some studies have found that technology can improve students' critical thinking skills, while others have seen its impact insignificant.

Further research is needed to determine the best way to utilize technology in learning mathematics in Indonesia. Technology in learning mathematics provides advantages. Simulations, animations, and other interactive learning experiences make learning mathematics more exciting and interactive. Technology also enables more personalized learning and greater accessibility of learning materials. In addition, technology has been proven to increase student engagement in learning mathematics. However, there are several challenges in using technology in learning mathematics in Indonesia. Barriers to access to technology, lack of funding, inadequate teacher training, and inadequate infrastructure must be overcome. Cultural aspects can also affect the use of technology in learning mathematics. Overcoming this challenge requires joint efforts from the government, schools and relevant stakeholders to create a learning environment that supports the effective use of technology. This article shows that using technology in teaching mathematics in Indonesia significantly increases student engagement and understanding. However, tackling existing challenges is essential to ensure technology is used more effectively in mathematics learning.

This knowledge will help design more effective strategies for integrating technology into mathematics education to improve students' mathematics learning outcomes and enhance their

digital literacy skills. With a focus on studying the use of technology in mathematics learning in Indonesia, this systematic literature review aims to provide educators and stakeholders with valuable insights in shaping effective and meaningful learning experiences for students in Indonesia.

References

- 1. Abdullah, A. W., Achmad, N., & Fahrudin, N. C. (2020). Deskripsi Hasil Belajar Matematika Siswa Melalui Pembelajaran Daring Pada Pokok Bahasan Bangun Ruang Sisi Datar. In Euler: Jurnal Ilmiah Matematika, Sains dan Teknologi (Vol. 8, Issue 2, pp. 36–41). https://doi.org/10.34312/euler.v8i2.10324
- 2. Abidin, Z., Mathrani, A., & Hunter, R. (2017). Student engagement with technology use in mathematics education: An Indonesian secondary school context. Proceedings Ot the 21st Pacific Asia Conference on Information Systems: "'Societal Transformation Through IS/IT", PACIS 2017, 165.
- 3. Abidin, Z., Mathrani, A., Hunter, R., & Parsons, D. (2017). Challenges of integrating mobile technology into Mathematics instruction in secondary schools: an Indonesian context. Computers in the Schools, 34(3), 207–222.
- 4. Adeliyanti, S., Suharto, & Hobri. (2018). Pengembangan E-Comic Matematika Berbasis Teknologi Sebagai Suplemen Pembelajaran Pada Aplikasi Fungsi Kuadrat. Kadikma, 9(1), 123–130. https://jurnal.unej.ac.id/index.php/kadikma/article/view/8425
- 5. Adriansa, F. (2021). Analisis Desain Interaksi Pembelajaran Matematika Menggunakan Teknologi Augmented Reality. elibrary.unikom.ac.id. https://elibrary.unikom.ac.id/id/eprint/5624/%0Ahttps://elibrary.unikom.ac.id/id/eprint/5624/8/UNIKOM FIKRI ADRIANSA YUDHA BAB 2.pdf
- 6. Al-Mutawah, M. A., Thomas, R., Eid, A., Mahmoud, E. Y., & Fateel, M. J. (2019). Conceptual understanding, procedural knowledge and problem-solving skills in mathematics: High school graduates work analysis and standpoints. International Journal of Education and Practice, 7(3), 258–273. https://doi.org/10.18488/journal.61.2019.73.258.273
- 7. Anderson-Pence, K. L. (2020). Virtual manipulatives: Making effective instructional choices. Colorado Mathematics Teacher, 53(1), 3.
- 8. Asdarina, O., & Fauzi, R. (2023). Hambatan Siswa Dalam Penggunaan Teknologi Informasi dan Komunikasi (TIK) pada Pembelajaran Matematika. PERISAI: Jurnal Pendidikan http://www.jurnal.serambimekkah.ac.id/index.php/perisai/article/view/250
- 9. Attard, C., & Holmes, K. (2020). "It gives you that sense of hope": An exploration of technology use to mediate student engagement with mathematics. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e02945
- 10. Azhari, B., & Fajri, I. (2022). Distance learning during the COVID-19 pandemic: School closure in Indonesia. International Journal of Mathematical Education in Science and Technology, 53(7), 1934–1954. https://doi.org/10.1080/0020739X.2021.1875072
- Bhatti, F. M., & Miranda, E. (2020). Model of e-teaching and e-evaluation methodology for mathematics during covid-19 pandemic in indonesia and pakistan (pp. 227–235). https://api.elsevier.com/content/abstract/scopus_id/85105800257
- 12. Bito, N., & Masaong, A. K. (2023). Peran Media Pembelajaran Matematika sebagai Teknologi dan Solusi dalam Pendidikan Di Era Digitalisasi dan Disruption. Jambura Journal of Mathematics Education, 4(1), 88–97. https://doi.org/10.34312/jmathedu.v4i1.17376
- 13. Bowman, M. A., Vongkulluksn, V. W., Jiang, Z., & Xie, K. (2022). Teachers' exposure to professional development and the quality of their instructional technology use: The mediating role of teachers' value and ability beliefs. Journal of Research on Technology in Education,

- 54(2), 188–204. https://doi.org/10.1080/15391523.2020.1830895
- 14. Buentello-Montoya, D. A., Lomelí-Plascencia, M. G., & Medina-Herrera, L. M. (2021). The role of reality enhancing technologies in teaching and learning of mathematics. Computers & Electrical Engineering, 94, 107287. https://doi.org/https://doi.org/10.1016/j.compeleceng.2021.107287
- 15. Burbules, N. C., Fan, G., & Repp, P. (2020). Five trends of education and technology in a sustainable future. Geography and Sustainability, 1(2), 93–97.
- 16. Cahyono, A. (2019). Teaching and learning mathematics around the city supported by the use of digital technology. Eurasia Journal of Mathematics, Science and Technology Education, 15(1). https://doi.org/10.29333/ejmste/99514
- 17. Cai, S., Liu, E., Shen, Y., Liu, C., Li, S., & Shen, Y. (2020). Probability learning in mathematics using augmented reality: impact on student's learning gains and attitudes. Interactive Learning Environments, 28(5), 560–573. https://doi.org/10.1080/10494820.2019.1696839
- 18. Chao, W.-H., & Chang, R.-C. (2018). Using Augmented Reality to Enhance and Engage Students in Learning Mathematics. Advances in Social Sciences Research Journal, 5(12), 455–464. https://doi.org/10.14738/assrj.512.5900
- 19. Chen, I.-H., Gamble, J. H., Lee, Z.-H., & Fu, Q.-L. (2020). Formative assessment with interactive whiteboards: A one-year longitudinal study of primary students' mathematical performance. Computers & Education, 150, 103833.
- 20. Cullen, C. J., Hertel, J. T., & Nickels, M. (2020). The Roles of Technology in Mathematics Education. Educational Forum, 84(2), 166–178. https://doi.org/10.1080/00131725.2020.1698683
- 21. Demitriadou, E., Stavroulia, K. E., & Lanitis, A. (2020). Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education. Education and Information Technologies, 25(1), 381–401. https://doi.org/10.1007/s10639-019-09973-5
- Dockendorff, M. (2019). How can digital technology enhance mathematics teaching and learning? In Examining Multiple Intelligences and Digital Technologies for Enhanced Learning Opportunities (pp. 216–243). IGI Global. https://doi.org/10.4018/978-1-7998-0249-5.ch011
- 23. Ferri, F., Grifoni, P., & Guzzo, T. (2020). Online learning and emergency remote teaching: Opportunities and challenges in emergency situations. Societies, 10(4), 86.
- 24. Firdaus, A. Q. (2016). Pengembangan Media Pembelajaran Matematika Berbasis Teknologi dan Informasi menggunakan Borland C++ pada Materi Matriks untuk SMK Sore Tulungagung Kelas XII. In Prosiding Seminar Nasional Pendidikan Matematika repo.iaintulungagung.ac.id. http://repo.iain-tulungagung.ac.id/3696/
- 25. Fonseca, D., & García-Peñalvo, F. J. (2019). Interactive and collaborative technological ecosystems for improving academic motivation and engagement. Universal Access in the Information Society, 18(3), 423–430. https://doi.org/10.1007/s10209-019-00669-8
- 26. Fredlina, K. Q., Putri, G. A. M., & Astawa, N. L. P. N. (2021). Penggunaan Teknologi Sebagai Media Pembelajaran Matematika di Era New Normal. Journal Information, 1(1), 1–6. https://eprints.uny.ac.id/20388/
- 27. Gunawan, Z. (2014). Pemanfaatan Teknologi Informasi dan Komunikasi (TIK) dalam Pembelajaran. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 3(1), 71–78. https://doi.org/10.24042/jpifalbiruni.v3i1.67
- 28. Guntur, M. I. S., Setyaningrum, W., Retnawati, H., Marsigit, M., Saragih, N. A., & bin Noordin, M. K. (2019). Developing augmented reality in mathematics learning: The challenges and strategies. Jurnal Riset Pendidikan Matematika, 6(2), 211–221.
- 29. Hanafi, mifta rizqi. (2019). Analisis Dan Perancangan Aplikasi Geometra, Media Pembelajaran Geometri Mata Pelajaran Matematika Berbasis Android Menggunakan

- Teknologi Augmented Reality. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9, pp. 1689–1699).
- 30. Hernita, H. (2023). Upaya inovasi Pembelajaran Matematika dengan Menggunakan Teknologi Augmented Reality untuk Mencapai Sustainable Development Goals (SDGs). Seminar Nasional Lppm Ummat. http://journal.ummat.ac.id/index.php/semnaslppm/article/view/14493%0Ahttps://journal.ummat.ac.id/index.php/semnaslppm/article/viewFile/14493/6788
- 31. Hidayati, K. (2021). Kesulitan Guru Matematika Dengan Memanfaatkan Teknologi Dalam Assesment Pada Pembelajaran Daring. Indonesian Journal of Applied Science and Technology, 2(3), 120–126. https://journal.publication-center.com/index.php/iiast/article/view/1301
- 32. Hofer, S. I., Nistor, N., & Scheibenzuber, C. (2021). Online teaching and learning in higher education: Lessons learned in crisis situations. Computers in Human Behavior, 121, 106789. https://doi.org/10.1016/j.chb.2021.106789
- 33. Holubowicz, A. (2021). Online Learning: An Enthusiastic Approach. CASALC Review, 11(1), 32. https://doi.org/10.5817/casalc2021-1-3
- 34. Huang, C.-Q., Han, Z.-M., Li, M.-X., Jong, M. S., & Tsai, C.-C. (2019). Investigating students' interaction patterns and dynamic learning sentiments in online discussions. Computers & Education, 140, 103589.
- 35. Huda, M. (2020). Implementasi Blended Learning Menggunakan Model Flipped Classroom: Peran Teknologi dalam Pembelajaran Matematika di Tengah Pandemi. Jurnal Pendidikan Matematika RAFA, 2(1), 1–8. https://repository.stkippgri-sidoarjo.ac.id/1104/
- 36. Huda, N., & Purwaningtias, F. (2017). Pemanfaatan Teknologi Augmented Reality (AR) Pembelajaran Matematika Menggunakan 3 (Tiga) Bahasa Pada Tingkat Sekolah Dasar Berbasis Android. Prosiding Seminar Nasional Darmajaya, 1(1), 1–9. https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/744
- 37. Irrawan, B. H., Wahyudi, W., & Ngatman, N. (2022). Analisis Penggunaan Teknologi Informasi Dan Komunikasi Pada Proses Pembelajaran Matematika Di Kelas V Sd Negeri. In Kalam Cendekia: Jurnal Ilmiah Kependidikan (Vol. 10, Issue 1). jurnal.uns.ac.id. https://doi.org/10.20961/jkc.v10i1.55272
- Juandi, D., Kusumah, Y. S., Tamur, M., Perbowo, K. S., & Wijaya, T. T. (2021). A meta-analysis of Geogebra software decade of assisted mathematics learning: what to learn and where to go? Heliyon, 7(5), e06953. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e06953
- 39. Kevin A. Artuz, J., & B. Roble, D. (2021). Developing Students' Critical Thinking Skills in Mathematics Using Online-Process Oriented Guided Inquiry Learning (O-POGIL). American Journal of Educational Research, 9(7), 404–409. https://doi.org/10.12691/education-9-7-2
- 40. Khairunnisa, S., & Aziz, T. A. (2021). Studi Literatur: Digitalisasi Dunia Pendidikan dengan Menggunakan Teknologi Augmented Reality pada Pembelajaran Matematika. Jurnal Riset Pendidikan Matematika Jakarta, 3(2), 53–62. https://doi.org/10.21009/jrpmj.v3i2.22267
- 41. Khotimah, R. P., Adnan, M., Ahmad, C. N. C., & Murtiyasa, B. (2021). Science, Mathematics, Engineering, and Mathematics (STEM) Education in Indonesia: A Literature Review. In Journal of Physics: Conference Series (Vol. 1776, Issue 1). https://doi.org/10.1088/1742-6596/1776/1/012028
- 42. Lo, C. K., & Hew, K. F. (2021). Student Engagement in Mathematics Flipped Classrooms: Implications of Journal Publications From 2011 to 2020. Frontiers in Psychology, 12, 672610. https://doi.org/10.3389/fpsyg.2021.672610
- 43. Love, M. L., Simpson, L. A., Golloher, A., Gadus, B., & Dorwin, J. (2020). Professional Development to Increase Teacher Capacity for the Use of New Technologies. Intervention in School and Clinic, 56(2), 115–118. https://doi.org/10.1177/1053451220914886

- 44. Mahoney, J., & Hall McManus, C. (2022). Online Learning for the Early Childhood and Elementary Education Student. In Handbook of Research on Adapting Remote Learning Practices for Early Childhood and Elementary School Classrooms (pp. 358–368). IGI Global. https://doi.org/10.4018/978-1-7998-8405-7.ch021
- 45. Marfuah, M., Suryadi, D., Turmudi, T., & Isnawan, M. G. (2022). Providing Online Learning Situations for In-Service Mathematics Teachers' External Transposition Knowledge During COVID-19 Pandemic: Case of Indonesia. Electronic Journal of E-Learning, 20(1 Special Issue), 69–84. https://doi.org/10.34190/ejel.20.1.2388
- 46. Marks, B., & Thomas, J. (2022). Adoption of virtual reality technology in higher education: An evaluation of five teaching semesters in a purpose-designed laboratory. Education and Information Technologies, 27(1), 1287–1305.
- 47. Marpa, E. P. (2020). Technology in the Teaching of Mathematics: An Analysis of Teachers' Attitudes during the COVID-19 Pandemic. International Journal on Studies in Education, 3(2), 92–102. https://doi.org/10.46328/ijonse.36
- 48. Mayasari, D., Indriayu, M., & Dyah Prastiti, T. (2023). Pengaruh Kemandirian Belajar dan Penggunaan Teknologi Terhadap Prestasi Belajar Matematika Selama Pembelajaran Daring Siswa Kelas VI SD Gugus Sinar Harapan. MENDIDIK: Jurnal Kajian Pendidikan Dan Pengajaran, 9(1), 32–37. https://doi.org/10.30653/003.202391.5
- 49. Milah, A. M., Susilawati, W., Widiastuti, T. A. T., & Ariany, R. L. (2022). Adaptasi Teknologi dalam Pembelajaran Matematika Technology Adaptation in Mathematics Learning. In Gunung Djati Conference Series (Vol. 12, Issue 1, pp. 73–79). download.garuda.kemdikbud.go.id. http://download.garuda.kemdikbud.go.id/article.php?article=3355511&val=29417&title=Tec hnology Adaptation in Mathematics Learning
- 50. Moreno-Guerrero, A. J., Aznar-Díaz, I., Cáceres-Reche, P., & Alonso-García, S. (2020). Elearning in the teaching of mathematics: An educational experience in adult high school. Mathematics, 8(5), 840. https://doi.org/10.3390/MATH8050840
- 51. Munawarah, M. (2020). Implementasi Pemanfaatan Teknologi Informasi dan Komunikasi pada Pembelajaran Matematika di SMK Muhammadiyah 3 Banjarmasin. idr.uin-antasari.ac.id. http://idr.uin-antasari.ac.id/id/eprint/14484%0Ahttp://idr.uin-antasari.ac.id/14484/7/7. BAB IV.pdf
- 52. Novikasari, I. (2012). Mencetak 'Problem Solver'SD/MI Handal dengan Pembelajaran Pemecahan Masalah Matematika Berbasis Teknologi. Primary: Jurnal Keilmuan Dan Kependidikan https://jurnal.uinbanten.ac.id/index.php/primary/article/view/741
- Pahrudin, A. (2021). The Effectiveness of science, technology, engineering, and mathematics-inquiry learning for 15-16 years old students based on K-13 Indonesian curriculum: The impact on the critical thinking skills. European Journal of Educational Research, 10(2), 681–692. https://doi.org/10.12973/eu-jer.10.2.681
- 54. Pellas, N., & Kazanidis, I. (2019). Developing and assessing augmented reality applications for mathematics with trainee instructional media designers: An exploratory study on user experience. Journal of Universal Computer Science, 25(5), 489–514.
- 55. Pranata, M. F., Nindiasari, H., & ... (2023). Analisis kebutuhan media pembelajaran matematika materi dimensi-tiga berbasis teknologi augmented reality. ... Pengajaran Matematika. https://jurnal.untirta.ac.id/index.php/Tirtamath/article/view/11092
- Pratama, S., Kurniasi, E. R., & ... (2023). Pengenalan Teknologi Augmented Reality Pada Pembelajaran Matematika Bangun Ruang Dan Bangun Datar. Community http://journal.universitaspahlawan.ac.id/index.php/cdj/article/view/12137%0Ahttp://journal.universitaspahlawan.ac.id/index.php/cdj/article/download/12137/9289
- 57. Pratidiana, D. (2021). Optimalisasi Penggunaan Teknologi Pembelajaran Mahasiswa Pendidikan Matematika UNMA Banten. GAUSS: Jurnal Pendidikan Matematika, 4(2), 11–20. https://doi.org/10.30656/gauss.v4i2.3554

- Pratiwi, R. I. M., & Wiarta, I. W. (2021). Pengembangan Multimedia Interaktif Berbasis Pendidikan Matematika Realistik Indonesia pada Pembelajaran Matematika Kelas II SD. Jurnal Edutech Undiksha, 9(1), 85–94. https://doi.org/10.23887/jeu.v9i1.32220
- 59. Putri, M. P., Prestiliano, J., & Setiyanti, A. A. (2014). Perancangan Media Pembelajaran Matematika Volume Bangun Ruang Kelas VI SD Menggunakan Teknologi Augmented Reality Dan Animasi 3D Pada Android. repository.uksw.edu. https://repository.uksw.edu/handle/123456789/11610
- 60. Putri, V. W., & Suripah, S. (2021). Eksplorasi Hasil Penelitian Yang Terintegrasi Teknologi Informasi Dan Komputer (TIK) Dalam Pembelajaran Matematika. JPPM (Jurnal Penelitian Dan Pembelajaran Matematika), 14(2), 208–222. http://repository.uir.ac.id/id/eprint/21657
- Radiamoda, A. A. (2022). Difficulties Encountered by the Students in Learning Mathematics. Indonesian Journal of Educational Research and Technology, 4(1), 63–70.
- 62. Rahmawati, W. A. (2021). Penggunaan Teknologi Internet dalam Proses Pembelajaran Matematika Sekolah Dasa di Masa Pandemi Covid-19. AKSELERASI: Jurnal Pendidikan Guru MI, 2(2), 88–102. https://doi.org/10.35719/akselerasi.v2i2.90
- 63. Ran, H., Kim, N. J., & Secada, W. G. (2022). A meta-analysis on the effects of technology's functions and roles on students' mathematics achievement in K-12 classrooms. Journal of Computer Assisted Learning, 38(1), 258–284. https://doi.org/10.1111/jcal.12611
- 64. Rarasati, N., Rozi, S., & Multahadah, C. (2022). Model Pembelajaran Berbasis Proyek pada Mata Kuliah Metode Optimisasi di Program Studi Matematika Fakultas Sains dan Teknologi Universitas Jambi. Jurnal Absis: Jurnal Pendidikan Matematika Dan Matematika, 4(2), 536–545. https://doi.org/10.30606/absis.v4i2.1172
- 65. Rini, T. P. (2012). Implementasi Strategi Pembelajaran Berbasis Media Teknologi Komputer Wingeom Dan Permainan Simulasi Dalam Pembelajaran Matematika Ditinjau Dari Respon eprints.ums.ac.id. http://eprints.ums.ac.id/id/eprint/17021
- 66. Rizki, S. (2012). Prosiding Seminar Nasional Pendidikan Pemanfaatan Teknologi Komputer Untuk Pembelajaran Matematika Khususnya Persamaan Kuadrat. In Prosiding Seminar Nasional Pendidikan. academia.edu. https://www.academia.edu/download/38331327/Prosiding_Pemanfaatan_Teknologi_Komput er_untuk_Pembelajaran_Persamaan_dan_Fungsi_Kuadrat.pdf
- 67. Rusdi, W., & Syahlan, M. (2019). Perancangan Aplikasi Pembelajaran Matematika Menggunakan Teknologi Augmented Reality Dengan Database Marker Cloud Recognition Berbasis Android Pada SD Inpres Paccerakkang Makassar. E-Jurnal JUSITI (Jurnal Sistem Informasi Dan Teknologi Informasi), 8–1, 78–88. https://doi.org/10.36774/jusiti.v8i1.603
- 68. Rusli, R., Rahman, A., & Abdullah, H. (2020). Student perception data on online learning using heutagogy approach in the Faculty of Mathematics and Natural Sciences of Universitas Negeri Makassar, Indonesia. Data in Brief, 29, 105152. https://doi.org/https://doi.org/10.1016/j.dib.2020.105152
- 69. Sabon, Y. O. S., Istiyono, E., & Salamah, U. (2022). Technology Literacy in the Development of Mathematics Learning in Indonesia During the Covid-19 Pandemic. Proceedings of the 5th International Conference on Current Issues in Education (ICCIE 2021), 640. https://doi.org/10.2991/assehr.k.220129.025
- 70. Salim, K., & Tiawa, D. H. (2015). The Student's Perceptions of Learning Mathematics Using Flash Animation Secondary School in Indonesia. Journal of Education and Practice, 6(34), 76–80.
- 71. Shé, C. N. í., Mac an Bhaird, C., & Fhloinn, E. N. í. (2023). Factors that influence student engagement with technology-enhanced resources for formative assessments in first-year undergraduate mathematics. International Journal of Mathematical Education in Science and Technology, 1–19. https://doi.org/10.1080/0020739X.2023.2182725
- 72. Shin, M., Simmons, M., Meador, A., Goode, F. J., Deal, A., & Jackson, T. (2023). Mathematics

- Instruction for Students With Learning Disabilities: Applied Examples Using Virtual Manipulatives. Intervention in School and Clinic, 58(3), 198–204. https://doi.org/10.1177/10534512221081268
- 73. Sihotang, S. F., & Ramadhani, R. (2021). Analisis Kemampuan Penggunaan Teknologi Informasi Mahasiswa dalam Pembelajaran Matematika di Era Pandemi Covid-19. Jurnal Ilmiah Matematika Dan Terapan, 18(1), 47–61. https://doi.org/10.22487/2540766x.2021.v18.i1.15492
- 74. Sukajaya, I. N., Doktor, P., Elektro, J. T., & Industri, F. T. (2016). Serious Game Berbasis Taksonomi Bloom: Sebuah Pendekatan Alternatif Penilaian Pembelajaran Matematika Berbantuan Teknologi Informasi. repository.its.ac.id. https://repository.its.ac.id/41399/1/2211301003-Disertation.pdf
- 75. Sulistyani, N. (2020). Kemampuan Calon Pendidik Dalam Memanfaatkan Teknologi Komputer Untuk Mengembangkan Multimedia Pembelajaran Matematika. Jurnal Derivat: Jurnal Matematika Dan Pendidikan Matematika, 3(2), 59–60. https://doi.org/10.31316/j.derivat.v3i2.717
- 76. Sulistyowati, & Rachman, A. (2017). Pemanfaatan Teknologi 3D Virtual Reality Pada. Jurnal Ilmiah NERO, 3(1), 37–44. https://nero.trunojoyo.ac.id/index.php/nero/article/view/71
- 77. Suliyono, B., Pranyata, Y. I. P., & Yuwono, T. (2022). Pengembangan Media Pembelajaran Matematika Berbasis Teknologi Augmented Reality Pada Dimensi Tiga Di Smk Negeri 11 Malang. De Fermat: Jurnal Pendidikan Matematika, 5(2), 160–166. https://doi.org/10.36277/defermat.v5i2.289
- 78. Suroyo, & Ismarwati, A. (2006). the Challenges of Knowledge Construction Through E-Moderating At Universitas Terbuka, Indonesia Case Study: Tutorial Online in Mathematics Courses. Asian Association of Open Universities Journal, 2(1), 21–35. https://doi.org/10.1108/AAOUJ-02-01-2006-B003
- 79. Syahida, E., Suprakarti, & Hadiyan, A. (2020). Pengembangan Media Pembelajaran Matematika Menggunakan Smartphone Berbasis Android Dengan Teknologi Augmented Reality Pada Materi Sistem Koordinat Kelas VIII SMP. In Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya (KNPMP) V. publikasiilmiah.ums.ac.id. https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/12205
- 80. Thurm, D., & Barzel, B. (2020). Effects of a professional development program for teaching mathematics with technology on teachers' beliefs, self-efficacy and practices. ZDM Mathematics Education, 52(7), 1411–1422. https://doi.org/10.1007/s11858-020-01158-6
- 81. Tiyasari, S., & Sulisworo, D. (2021). Pengembangan Kartu Bermain AR Berbasis Teknologi Augmented Reality sebagai Multimedia Pembelajaran Matematika. Vygotsky, 3(2), 123. https://doi.org/10.30736/voj.v3i2.411
- 82. Tong, D. H., Uyen, B. P., & Van Anh Quoc, N. (2021). The improvement of 10th students' mathematical communication skills through learning ellipse topics. Heliyon, 7(11), e08282. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e08282
- 83. Trust, T., & Whalen, J. (2020). Should Teachers be Trained in Emergency Remote Teaching? Journal of Technology and Teacher Education, 28(2), 189–199. https://www.learntechlib.org/primary/p/215995/
- 84. Wawan, W., Marsigit, M., Ningsih, E. F., Widyawati, S., Kusumaningtyas, W., Mahmudi, M., & Setiawan, A. (2018). Technology-Integrated Collaborative Learning: Convenient Alternative in Developing the Problem Solving Capability and Positive Attitude. International Journal of Engineering & Technology, 7(3.2), 737–740.
- 85. Widiawati, A., Kusuma, B. J. M., & ... (2019). Pemanfaatan Teknologi Mobile Dan Pembelajaran Berbasis Kearifan Lokal Dan Kepariwisataan Dalam Pembelajaran Matematika. Jurnal Ilmiah IKIP http://e-journal.undikma.ac.id/index.php/jiim/article/view/2219
- 86. Wirawan, R., Awal Nur, M., & Syahraeni, R. (2020). Aplikasi Pembelajaran Matematika

- Interaktif Berbasis Multimedia. In JARTIKA: Jurnal Riset Teknologi dan Inovasi Pendidikan (Vol. 3, Issue 1, pp. 75–83). https://doi.org/10.36765/jartika.v3i1.28
- 87. Xiao, Y., & Watson, M. (2019). Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X17723971
- 88. Xie, C., Cheung, A. C. K., Lau, W. W. F., & Slavin, R. E. (2020). The effects of computer-assisted instruction on mathematics achievement in mainland China: a meta-analysis. International Journal of Educational Research, 102, 101565.
- 89. Yang, L., Susanti, W., Hajjah, A., Marlim, Y. N., & Tendra, G. (2022). Perancangan Media Pembelajaran Matematika Menggunakan Teknologi Augmented Reality. In Edukasi: Jurnal Pendidikan (Vol. 20, Issue 1, pp. 122–136). academia.edu. https://doi.org/10.31571/edukasi.v20i1.3830
- 90. Zayyadi, M., Supardi, L., & Misriyana, S. (2017). Pemanfaatan Teknologi Komputer Sebagai Media Pembelajaran Pada Guru Matematika. Jurnal Pengabdian Masyarakat Borneo, 1(2), 25. https://doi.org/10.35334/jpmb.v1i2.298
- 91. Zengin, Y. (2019). Development of mathematical connection skills in a dynamic learning environment. Education and Information Technologies, 24(3), 2175–2194.
- 92. Zhang, Y., & Wang, Q. (2020). Content learning opportunities, computer-based instruction, and students' mathematics and science achievement. International Journal of Mathematical Education in Science and Technology, 51(8), 1164–1180.
- 93. Zulfikri, A. (2023). Dampak Implementasi Teknologi Virtual Reality dalam Pembelajaran Matematika pada Siswa Sekolah Dasar di Kabupaten Sukabumi. Jurnal Pendidikan West Science. https://wnj.westscience-press.com/index.php/jpdws/article/view/463