
Nanotechnology Perceptions 20 No.S3 (2024) 896–904                                                

 
 

A Study on the Prediction of Bike 

Availability Using Machine Learning  

Seung Yong Lee1, Youngkeun Choi2, Yangmi Lim3* 

 
1College of Liberal Arts, Namseoul University, 91 Daehak-ro, Seonghwan-eup, Seobuk-gu, 

Cheonan-si, Chungcheongnam-do, Republic of Korea, leesky@nsu.ac.kr 
2Division of Business Administration, College of Business, Sangmyung University Seoul, 

Republic of Korea, penking1@smu.ac.kr 
3IT media department, Duksung Woman’s University, 33 Samyang-ro 144-gil, Dobong-gu, 

Seoul, Republic of Korea, yosimi@duksung.ac.kr  

 

 
The bike-sharing service has offered significant conveniences to urban residents, effectively 

augmenting the public transportation infrastructure. To achieve this, both operators and users need 

to forecast the precise number of available Bikes at docking stations. This engineering white paper 

is primarily centered on short-term predictions about docking station usage in London, England. 

The primary objective of this paper is to formulate a dependable Bike count prediction model 

utilizing machine learning methodologies. To accomplish this, various weather and day-related 

features serve as predictors, and a range of techniques spanning from linear regression to root mean 

square error evaluation were applied to construct the prediction model. The findings indicate that, 

concerning weather conditions, higher temperatures stimulate increased Bike usage, whereas 

heightened humidity and wind speed tend to decrease Bike usage. Regarding day types, Bike usage 

experiences a reduction on holidays and weekends.  
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1. Introduction 

The swift advancement in mobile and Internet technologies presents numerous opportunities 

within the realm of the sharing economy. Bike sharing has emerged as a prominent facet of 

the sharing economy, gaining substantial popularity in recent times [1]. Bike-sharing services 

have witnessed widespread adoption across numerous major global urban centers. Bikes, 

serving as a vital mode of transportation, have offered considerable advantages for short-

distance travel, contributing to the reduction of greenhouse gas emissions and promoting 

healthy exercise practices among cyclists. Shared mobility services are typically proffered 

through two modalities: docked bike sharing and undocked bike sharing. While the latter, the 

dockless bike-sharing approach, has engendered several challenges, including issues related 

to Bike abandonment, pedestrian path obstructions, and inadequate management, the former, 
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docked bike-sharing programs, have witnessed a surge in popularity. 

Efficient management of these Bikes poses a non-trivial challenge. The capacity constraints 

of docking stations impose limitations on the availability of Bikes for rental and return, leading 

to instances of station depletion or saturation. In response, manual repositioning of Bikes via 

dedicated trucks occurs according to a predetermined schedule (e.g., 8 a.m. and 2 p.m., as 

observed in cities like Suzhou, China). This approach aims to mitigate the consequences of an 

uneven distribution of Bikes within docking stations, thereby optimizing resource utilization. 

Recognizing the imperative for enhanced Bike management, this white paper seeks to harness 

advanced predictive models for the enhancement of bike-sharing system management. Short-

term traffic forecasting represents a crucial facet of Intelligent Transportation Systems (ITS) 

research, offering the potential to predict traffic metrics such as flow rates, delays, speeds, and 

travel times. Methodologies employed in this domain encompass statistical techniques, 

nonlinear theories, and machine learning methodologies [2]. Wang conducted a comparative 

analysis of various machine learning models for local Bike rental demand forecasting, 

revealing that neural network-based and tree-based models exhibited superior predictive 

accuracy [3]. 

In recent years, a surge in research activity has underscored the pivotal role of machine 

learning in delivering state-of-the-art outcomes for short-term forecasting challenges, with a 

heightened focus on its capacity to adapt to data convergence issues [4]. Over the preceding 

decades, a multitude of investigations has sought to advance Bike-related predictive modeling 

employing diverse methodologies. For instance, studies such as Singhvi have introduced a 

logarithmic regression model to anticipate the Bike usage patterns during morning peak hours 

in New York City, incorporating variables like taxi utilization, weather conditions, and spatial 

factors to enhance predictive accuracy [5]. 

Hence, this investigation endeavors to delineate the key determinants for forecasting bike 

counts at individual stations through the application of machine learning techniques. While 

prior research predominantly gravitates towards macroscopic predictions within the domain 

of bike-sharing systems, there exists a compelling rationale to delve into station-level 

forecasting. The study scrutinizes a dataset comprising 17,414 instances sourced from 

Transport for London. Linear regression analysis, coupled with split validation facilitated by 

RapidMiner, is employed to explore the influential factors affecting bike counts in relation to 

weather conditions and day types. The revelations derived from this inquiry hold significant 

implications for the refinement of bike-sharing operational systems. 

 

2. Related Study 

Regression count modeling represents a prevalent technique for forecasting the real-time Bike 

inventory. In Austria, Rudloff and Lackner proposed a demand model for Bikes and return 

boxes, employing Poisson, negative binomial (NB), and hurdles models to predict the Bike 

count within a specified timeframe [6]. These models incorporated weather data, with 

particular emphasis on temperature and precipitation, alongside neighboring station 

information as regression variables. The findings indicated that the hurdles model 

outperformed the other two approaches. Wang et al. employed logarithmic linear and NB 
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regression models, considering 13 independent variables encompassing socioeconomic, 

demographic, and geographic factors to forecast bike availability [7]. The results underscored 

the significance of all 13 highly fitting variables in both models. In a related study, Rixey 

utilized multivariate linear regression to pinpoint pivotal elements influencing bike-sharing 

ridership and subsequently estimated system ridership [8]. The research identified 

demographics, environmental conditions, and access to an extensive station network as key 

determinants within the multivariate linear regression model. 

Given the vast scale and intricacies inherent in Bike Sharing System (BSS) data, the discourse 

within the engineering domain has prominently revolved around clustering analysis and 

visualization technologies. Numerous researchers have diligently employed these approaches 

to gain insightful perspectives by illuminating trends via visualization techniques [9]. To 

illustrate, Froehlich et al. harnessed Barcelona's 13th-week Bike station usage data to 

scrutinize BSS patterns. Their inquiry delved into human behavior, geographic considerations, 

and temporal relationships, subsequently endeavoring to prognosticate forthcoming Bike 

station utilization. Notably, temporal and spatial patterns were meticulously examined, 

revealing a degree of interdependence between stations. Docking stations were clustered 

utilizing the available Bike data, revealing that proximate stations exhibited close associations 

and grouping tendencies. 

Kaltenbrunner et al. similarly embarked on an enhancement quest for Barcelona's BSS, 

leveraging docking station data [10]. Their investigation entailed discerning patterns of 

temporal and geographical mobility, facilitating the identification of imbalances within the 

BSS. Furthermore, they adeptly employed time series analysis techniques to forecast Bike 

counts at specific stations and times. 

Vogel et al. ventured into the realm of bike-sharing data analysis with localized datasets, 

extracting patterns of Bike activity [11]. Employing cluster analysis techniques, Bike stations 

were categorized based on pickup and return activities, employing algorithms such as k-means, 

expectation-maximization, and sequential information bottleneck. The temporal activity of 

stations was instrumental in clustering the stations into five distinct groups, providing hourly 

average pickup and return statistics for each cluster. The linkage between these clusters and 

geographic information unveiled a propensity for adjacent stations to fall within the same 

cluster. 

Feng and Hillston et al. introduced a novel moment-based predictive model reliant on time-

based speed, drawing upon the Publication Continuous Time Markov Chain (PCTMC) to 

estimate Bike availability [12]. 

Gast and Massonnet et al. employed queuing theory-based time-mixed BSS models to predict 

Ronal probabilities [13]. Furthermore, novel metrics were proposed for model evaluation, 

diverging from the conventional root-mean-square error (RMSE). Fricker and Gast 

investigated the impact of station capacity on peer BSS performance, deploying probabilistic 

models and flow approximation techniques [14]. This model affords insights into optimizing 

station sizes to minimize imbalance issues. 

Several recent studies within the engineering domain have embraced time series 

methodologies for the prediction of Bike counts at stations [15]. While these methodologies 



899 SeungYong Lee et al. A Study on the Prediction of Bike....                                                                            
 

Nanotechnology Perceptions Vol. 20 No.S3 (2024) 

have exhibited remarkable performance in elucidating historical trends and forecasting future 

counts, they are not without limitations. For instance, Kaltenbrunner employed the Automatic 

Regression Transfer Average (ARMA) model to predict Bike availability at stations [10]. 

However, the ARMA model assumes a static mean and variance for observations over time, a 

premise incongruent with the dynamic nature of Bike station data. 

Froehlich et al. introduced four models encompassing the last value, historical mean, historical 

trend, and Bayesian network [16]. They demonstrated that the Bayesian network model 

yielded the least predictive errors. However, the Bayesian network model did not directly 

provide the precise Bike count; instead, it categorized Bike availability into discrete intervals 

(e.g., 25%, 50%, 75%, and 100%). The algorithm selected one of these categories to describe 

bike availability. 

  Yoon et al. introduced a spatiotemporal prediction system employing the Automatic 

Regression Movement Integration Average (ARIMA) model to address the shortcomings 

inherent in ARMA models, particularly their inability to handle non-stationary data [15]. This 

novel approach incorporates seasonal trends and ambient information into the modeling 

process. The model's evaluation was conducted using a modest three-week dataset, revealing 

marginal enhancements in predictive performance compared to ARMA (with errors of 3.47 

Bikes / Station for ARIMA vs. 3.50 Bikes / Station for ARMA). Nevertheless, it's important 

to note that ARIMA is inherently a static model, characterized by fixed coefficients and 

predictions confined to constant intervals. Additionally, ARIMA is regarded as a complex and 

challenging model to interpret. 

 

3. Methodology 

3.1 Dataset 

We conducted an analysis of a sample comprising 17,414 data points, sourced from Transport 

for London. The data was gathered from three distinct sources: 1. 

Https://cycling.data.tfl.gov.uk/ 'Contains OS data © Crown copyright and database rights 

2016' and Geomni UK Map data © and database rights [2019] 'Powered by TfL Open Data'. 

2. Https://freemeteo.com - weather data 3. https://www.gov.uk/bank-holidays From 1/1/2015 

to 31/12/2016. The cycling dataset was organized based on 'Start time,' representing the count 

of new bike shares grouped by hour, with long-duration shares excluded from the count. 

Drawing upon existing literature related to bike-sharing and considering three categories of 

bike count determinants, we examined the impact of five variables categorized into two 

groups: weather types and day types. These variables are enumerated and their definitions 

provided in Table 1. 

Table 1: The variables in each category 
Categories Variables Definitions 

Bike counts cnt the count of a new bike shares 

Weather 

counts 

t1 real temperature in C 

hum humidity in percentage 

windspeed wind speed in km/h 

Day types 
isholiday 1 holiday / 0 non holiday 

isweekend 1 if the day is weekend 

https://cycling.data.tfl.gov.uk/
https://www.gov.uk/bank-holidays%20From%201/1/2015%20to%2031/12/2016
https://www.gov.uk/bank-holidays%20From%201/1/2015%20to%2031/12/2016


                                                          A Study on the Prediction of Bike.... SeungYong Lee et al. 900  
 

Nanotechnology Perceptions Vol. 20 No.S3 (2024) 

3.2 Analysis method 

This study uses RapidMiner tool to conduct linear regression and machine learning analyses 

for the prediction of bike counts. 

3.2.1 Linear regression 

Linear regression analysis, a statistical method, is employed for quantitative prediction. This 

technique assesses the degree of correlation between variables. While classification methods 

are typically applied for predicting categorical labels, regression methodologies are tailored 

for predicting continuous values. In the context of linear regression analysis, the objective is 

to establish a linear association between a quantitative dependent variable, denoted as Y, and 

K independent variables. The fundamental model for multiple linear regression analysis is 

articulated as follows. 

Yi = β0 + β1·X1 + β2·X2 + .... + βK·XK + εi               (1) 

Building upon the aforementioned discussion, we utilize a multivariable linear regression 

model to incorporate facility-related factors, proximity to the nearest landmark, and the 

popularity of said landmark as indicators of house prices. However, owing to inherent 

uncertainties in real-world scenarios, we must account for this uncertainty by integrating the 

variability, which can be simulated through the introduction of noise denoted as ΔP, during 

the price prediction process. 

P − A =  [
fi
d
q

] | distribution(∆P)                  (2) 

In this model, we incorporate facility embedding represented by 'fi' denoting property types, 

'd' signifying room types, and 'q' representing bed types. 

The model comprises regression coefficients β0, β1, β2, ..., βK, with εi signifying the 

superordinate error inherent in measuring the dependent variable 'y.' Developing a regression 

model entails the determination of these regression coefficients, β0, β1, β2, ..., βK. 

Typically, a sample drawn from the broader population is employed in the analysis. Given our 

lack of knowledge regarding the precise population regression coefficients (β0, β1, β2, ..., βK), 

we resort to the least squares method (OLS) to estimate them based on the provided sample 

data. This approach yields estimated coefficients denoted as β*0, β*1, β*2, ..., β*K, which 

minimize the sum of squared deviations between the model's predicted values, Y*, and the 

actual values, Y. 

Y*
i = β*

0 + β*
1·X1 + β*

2·X2 + .... + β*
K·XK + εi              (3) 

OLS can be employed when the dependent variable conforms to the following assumptions. 

1. The dependent variable adheres to a standard normal distribution. 

2. There exists a linear relationship between the independent and dependent variables. 

3. Each observation maintains independence from others. 

4. The variability of the dependent variable's values remains consistent across different values 
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of the independent variable, a condition referred to as homoscedasticity. 

When these aforementioned assumptions hold true, the resultant predicted value is an unbiased 

estimate, and it yields the minimum mean square error when compared to other unbiased 

estimates. However, when the regression model is applied for prediction, and the first 

assumption is not met, even if the dependent variable follows an arbitrary distribution, the 

predictive estimates can still yield highly accurate results. This occurs due to the data mining 

approach's practice of using separate cases for training the model and validating its 

performance. 

3.2.2 Data mining models 

To thrive in an increasingly competitive marketplace, numerous companies are turning to data 

mining techniques for price prediction analysis. Achieving effective customer acquisition 

necessitates the development of a more precise and efficient rental price prediction model. 

Statistical and data mining techniques have been harnessed to construct these prediction 

models. Data mining techniques are instrumental in uncovering noteworthy patterns or 

relationships within data, enabling the prediction or classification of behavior through model 

fitting based on available data. 

In scenarios where machine learning necessitates the separation of learning and testing 

datasets, the test dataset must adhere to the following criteria: First, it should be formatted 

consistently with the training dataset. Second, it must not overlap with the training dataset. 

Third, both datasets must exhibit data consistency. However, the creation of a test dataset that 

satisfies these requirements can be challenging. In the field of data mining, various validation 

frameworks leveraging a single dataset have been developed to address this challenge. 

This study leverages the Split Validation operator provided by RapidMiner to facilitate this 

process. This operator partitions the input dataset into training and test datasets, enabling 

performance evaluation. In our investigation, we opt for relative segmentation among the 

operator's parameter options, utilizing 70% of the input data for the learning dataset. 

3.2.3 Performance evaluation 

Performance assessment leverages training data to evaluate the effectiveness of the generated 

model. Performance metrics encompass both technical performance measures and heuristic 

measures. The technical performance measures employed in this study elucidate model 

performance by generating models from training data, processing test data to construct models, 

and subsequently comparing the class labels of original verification cases with predicted class 

labels. The assessment of technical performance is stratified into supervised and unsupervised 

learning. The supervised learning methodologies employed in this study encompass 

classification and regression. All data utilized for learning and testing possess original class 

values. Performance evaluation is conducted by scrutinizing and analyzing the alignment 

between the original class values and the prediction outcomes. RapidMiner offers performance 

indicators for common classification problems, and among these, this study employs the root 

mean square error (RMSE) for evaluation. 

Root Mean Square Error (RMSE) serves as a frequently employed metric when assessing the 

disparity between estimated values or those predicted by a model and real-world observations. 

It is well-suited for conveying precision. Each disparity is also referred to as a residual, and 
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the root mean square deviation amalgamates these residuals into a singular measure. The root 

mean square deviation of the estimator concerning the estimate is defined as the square root 

of the mean square error. 

 

4. Results 

4.1 Linear regression 

The outcomes of the linear regression analysis are as follows. 

Table 2: The results of linear regression 
Category Variable Coefficient p-value 

Weather 

types 

(3) 

t1 44.191 0.000 

hum -27.552 0.000 

windspeed -2.802 0.003 

Day types 

(2) 

isholoday -287.548 0.000 

isweekend -212.722 0.000 

The analysis unveiled the significance of all variables at the p < 0.05 level. Furthermore, all 

three room types exhibited significance at the p < 0.05 level. Notably, temperature 

demonstrated a positive correlation with bike counts. Conversely, humidity, wind speed, 

holidays, and weekends displayed negative associations, leading to a decrease in bike counts. 

4.2 Performance evaluation 

In numerous prediction scenarios, this study aims to impose greater penalties on predicted 

values that deviate further from the actual values, in contrast to those that exhibit proximity to 

the actual values. To achieve this objective, the study employs the mean of squared error 

values, referred to as the root mean squared error (RMSE). The RMSE formula is as follows: 

RMSE =  root{(e1^2 + e2^2 + … + en^2) / n }                  (4) 

Here, 'n' denotes the count of rows in the test set. While this formula may appear complex 

initially, it essentially encapsulates the following process: 

 Taking the difference between each predicted value and the actual value (or error), 

 Squaring this difference (square), 

 Taking the mean of all the squared differences (mean), and 

 Taking the square root of that mean (root). 

Consequently, when reading from the bottom to the top, we arrive at the term 'root mean 

squared error.' When computing the RMSE value for the predictions generated by this study 

on the test set, the resulting RMSE is approximately 9.31. One advantageous feature of RMSE 

is its unit consistency with the predicted value, as it involves squaring and then taking the 

square root. This characteristic facilitates a straightforward interpretation of the error's 

magnitude in the same units as the prediction. 
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5. Conclusions 

Bike sharing systems have witnessed global expansion and established themselves as a 

dependable mode of transportation. However, they grapple with logistical challenges, with 

some stations experiencing bike shortages while others become inundated. Addressing this 

issue necessitates the proactive prediction of bike demand, providing an opportunity for both 

cyclists and operating agencies to contribute to the solution. Cyclists can leverage predicted 

demand to plan and adjust their routes, while bike-sharing system (BSS) managers can 

strategically redistribute bikes using service trucks to balance station capacities. This research 

centers on short-term traffic forecasting, specifically predicting the availability of bikes at 

shared-bike stations, employing machine learning techniques. It employs a linear regression 

model to forecast bike counts at stations within London's bike-sharing systems. This study 

elucidates the determinants of bike counts, with a focus on mobility sharing. Concerning 

weather conditions, it is observed that higher temperatures correlate with increased Bike usage, 

whereas elevated humidity and wind speed are associated with reduced Bike usage. These 

findings underscore the influence of favorable weather conditions on heightened shared Bike 

usage. Additionally, for different day types, Bike usage decreases during holidays and 

weekends, underscoring the prevalence of shared Bikes as a weekday transportation choice for 

work or school-related commuting. 

This research proactively delves into the determinants of bike counts within the sharing 

economy domain, utilizing an official dataset sourced from Transport for London. The 

findings offer a comprehensive insight into the factors influencing bike counts within this 

emerging business paradigm. The primary objective of this paper is to formulate an optimal 

predictive model for bike counts, leveraging a restricted set of features encompassing weather 

and day types. Employing machine learning techniques, including linear regression and feature 

importance analyses, the study endeavors to attain superior predictive performance, as 

measured by RMSE. This methodological approach reveals latent patterns in bike counts. In 

addition to its methodological contributions, this study enriches the sharing economy literature 

by presenting a unified model that synthesizes the determinants of bike counts within this 

unconventional bike-sharing system. On a practical level, the research furnishes valuable 

insights for stakeholders, including bike-sharing providers, enabling them to assess their 

market positioning and enhance profitability. 

Nonetheless, we acknowledge a notable limitation in this research. Our economic modeling 

approach is employed to scrutinize the dataset and discern the relationships between various 

factors and bike counts. However, we do not encompass any social or psychological variables 

that may influence bike counts. Consequently, it is imperative to undertake qualitative research 

to delve into the underlying motivations guiding users' decisions regarding bike usage. Future 

avenues of research in this study may encompass (i) investigating alternative feature selection 

methodologies, such as random forest feature importance, (ii) conducting further 

experimentation with neural network architectures, and (iii) procuring additional training data 

from other hospitality services, such as vrbo, to enhance the performance of the k-means 

clustering with ridge regression model. 
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