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We examine the expansion of the GMRES algorithm and present the methodologies of DGMRES 

and LDGMRES for the resolution of the equation 𝐴𝑥=𝑏, in which 𝐴 denotes a singular matrix. 

DGMRES is a computational method created to determine the Drazin-inverse solution of either 

consistent or inconsistent linear systems of the form Ax = b, where A ∈ C^(n×n)  is a singular and 

generally non-Hermitian matrix with an arbitrary index. Typically, this strategy involves restarting, 

which may hinder convergence and result in stagnation within the DGMRES procedure. By 

drawing from "the LGMRES and GMRES-E methodologies, we suggest two innovative tactics to 

improve the convergence of restarted DGMRES by introducing approximate error vectors or 

approximate eigenvectors (related to a subset of the smallest eigenvalues) to the Krylov subspace. 

We elaborate on the execution of these methods and offer numerical examples to showcase the 

efficacy of these approaches." 
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1. Introduction 

Consider the following linear system 

𝐴𝑥 = 𝑏                                                           (1.1) 

where 𝐴 is a real square matrix of size 𝑛 × 𝑛 and 𝑏 is a real vector of size 𝑛 is consistent, if it 

includes at least one solution, otherwise it said to be inconsistent [1]. For example, 

 the system  

{
x +  2y =  1
x −  y =  2

 

is a consistent system, 
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 but the system 

{
x +  y =  1
x +  y =  2

 

 is inconsistent, because it has no solution. 

The matrix coefficient 𝐴 in the system (1.1) is said to be singular, if  

det 𝐴 = 0, 

The matrix 𝐴 is nonsingular [3,5], if  

det 𝐴 ≠ 0, 

 If the matrix 𝐴 is nonsingular, then, there exists the inverse of 𝐴. Moreover, if the system (1.1) 

is also consistent, then it has unique solution 

𝑥 = 𝐴 −1𝑏. 

1.1 Hermitian matrix  

The square matrix 𝐴 is Hemitian, if [7] 

𝐴 𝐻 = 𝐴,    where 𝐴 𝐻 = 𝐴 ̅𝑇,  

with 𝐴̅ as conjugate of 𝐴 and 𝐴 𝑇 is the transpose of 𝐴. 

 If 𝐴 is a real matrix, then 𝐴 𝐻 = 𝐴 𝑇. 

 In other words, a real matrix 𝐴 is Hermitian, whenever, 𝐴 𝑇 = 𝐴.  

For example, the matrix 

A = [
1 2 3
2 −1 4
3 4 0

] 

Is Hermitian matrix 

1.2 Eigenvalue and Eigenvector  

For any square matrix 𝐴 of size 𝑚 × 𝑚, if there exist a scalar value 𝜆 and a nonzero vector 𝑥 

such that [13,2] 

𝐴𝑥 = 𝜆𝑥,                                                        (1.2) 

 then 𝜆 and 𝑥 are called eigenvalue and eigenvector of A 

For example, if 𝐴 = 𝐼 an identity matrix, then we will obviously have 𝐼𝑥 = 1𝑥, that is, "𝜆 = 1 is 

an eigenvalue of 𝐴 and any vector in ℝ𝑚 is an eigenvector of 𝐴. One not that " (1) implies that  

(𝐴 − 𝜆𝐼)𝑥 = 0,                                                  (1.3) 

The equation (1.2) has non-trivial solution, if 𝐴 − 𝜆𝐼 is a singular matrix. In other words, if 

det(𝐴 − 𝜆𝐼) = 0,                                                 (1.4) 

 the equation (1.3) includes non-trivial solution [6]. 
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 If A is of size 3 × 3,  

 "A = [

a11 a12 a13

a21 a22 a23

a31 a32 a33

]" 

we will have 

det(A −  λI) =  det ([

a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ
]) 

 

                     = (a11 − λ) det ([
a22 − λ a23

a32 a33 − λ
]) −

                             (a12) det ([
a21 a23

a31 a33 − λ]) + (a13) det ([
a21 a22 − λ
a31 a32

])      

                    " = (𝑎11 − 𝜆)((𝑎22 − 𝜆)(𝑎33 − 𝜆) − 𝑎23𝑎32) − 𝑎12(𝑎21(𝑎33 − 𝜆) − 𝑎23𝑎31 ) + " 

                         𝑎13(𝑎21𝑎32 − 𝑎31(𝑎22 − 𝜆))  

                    = −𝜆3 + (𝑎11 + 𝑎22 + 𝑎33)𝜆2 +  

(−𝑎11𝑎22 − 𝑎11𝑎33 − 𝑎22𝑎33 + 𝑎23𝑎32 + 𝑎12𝑎21 + 𝑎13𝑎31)𝜆 + 

(−𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎31𝑎22). 

It is seen that det (𝐴 − 𝜆𝐼) is a polynomial of degree 3 and so it has 3 roots. So, in general for 

𝑚 × 𝑚 matrix 𝐴, we have 

det (𝐴 − 𝜆𝐼) = (−1)𝑚 ((𝜆 − 𝜆1 )(𝜆 − 𝜆2 ) ⋯ (𝜆 − 𝜆𝑚)),                         (1.5) 

where 𝜆1, 𝜆2, ⋯, 𝜆𝑚 are roots of det (𝐴 − 𝜆𝐼) and also are eigenvalues of 𝐴. 

1.3 Definition Two square matrices of 𝐴 and 𝐵 are similar, if there exists a nonsingular matrix 

𝑃 such that 𝐵 = 𝑃−1𝐴𝑃 [4,6]. 

1.4 Definition Positive definite and positive semi definite A square matrix 𝐴 of size 𝑚 × 𝑚 is 

positive definite if for any nonzero 𝑥 ∈ ℂ𝑚 [10] 

𝑥𝐻𝐴𝑥 > 0, 

 Semi-positive definite if for any nonzero 

𝑥 ∈ ℂ𝑚 𝑥𝐻𝐴𝑥 ≥ 0, 

 Symmetric positive definite, if             𝐴𝐻 = 𝐴, 

 and for any nonzero 𝑥 ∈ ℂ𝑚  

𝑥𝐻𝐴𝑥 > 0, 

 Symmetric semi-positive definite, if 

𝐴𝐻 = 𝐴, 
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 and for any nonzero 𝑥 ∈ ℂ𝑚 

𝑥𝐻𝐴𝑥 ≥ 0. 

 For example, the matrix  

A = [
5 1
1 4

] 

is symmetric positive definite, because 

 𝐴𝐻 = 𝐴𝑇 = 𝐴, and for any nonzero 𝑥 ∈ ℂ2 

xHAx = [x̅1, x̅2] [
5 1
1 4

] [
x1

x2
] = [x̅1, x̅2] [

5x1 + x2

5x1 + 4x2
] 

            = 5x1x̅1 + x2x̅1 + x1x̅2 + 4x2x̅2 

On the other hand, we have 

|𝐱𝟏 + 𝐱𝟐|
𝟐 = (𝐱𝟏 + 𝐱𝟐)(𝐱𝟏 + 𝐱𝟐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝐱𝟏 + 𝐱𝟐)(𝐱̅𝟏 + 𝐱̅𝟐) 

            = 𝒙𝟏𝒙̅𝟏 + 𝒙𝟐𝒙̅𝟏 + 𝒙𝟏𝒙̅𝟐 + 𝒙𝟐𝒙̅𝟐 

Then, 

𝒙𝑯𝑨𝒙 = |𝒙𝟏 + 𝒙𝟐|
𝟐 + 𝟒𝒙𝟏𝒙̅𝟏 + 𝟑𝒙𝟐𝒙̅𝟐 = |𝒙𝟏 + 𝒙𝟐|

𝟐 + 𝟒|𝒙𝟏|
𝟐 + 𝟑|𝒙𝟐|

𝟐 > 𝟎 

 

2. Drazin inverse 

     Drazin inverse is in fact a generalization of the inverse of a square matrix. It is extended to 

the case that a square matrix has no custom inverse. Before that we need to define the index 

of a matrix [5,9,11]. 

2.1 Index of a matrix  

    For a square matrix 𝐴, the index of 𝐴, denoted by 𝑖𝑛𝑑(𝐴), is the smallest nonnegative integer 

number 𝑘 such that [8] 

𝑟𝑎𝑛𝑘(𝐴𝑘+1 ) = 𝑟𝑎𝑛𝑘(𝐴𝑘 ) , 

where 𝑟𝑎𝑛𝑘(𝐴) shows the rank of the matrix 𝐴.  

Example. For any identity matrix 𝐼, 

𝐼1 = 𝐼0 =𝐼, 

and so, 𝑟𝑎𝑛𝑘(𝐼1 ) = 𝑟𝑎𝑛𝑘(𝐼0 ).  

Therefore, 𝑖𝑛𝑑(𝐴) = 0. 

Example Consider the following matrix:  

𝑨 = [
𝟏 𝟏 𝟑
𝟓 𝟐 𝟔

−𝟐 −𝟏 −𝟑
] 
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It is seen that   

𝑟𝑎𝑛𝑘 (𝐴4 ) = 𝑟𝑎𝑛𝑘(𝐴3 ). 

So, 𝑖𝑛𝑑(𝐴) = 3. 

2.2 Drazin-inverse matrix [2] 

     Let 𝐴 be a real or complex square matrix of dimension 𝑛 × 𝑛 with 𝑖𝑛𝑑(𝐴) = 𝑘. 

 The matrix 𝐴𝐷 is called the Drazin inverse of 𝐴, if it satisfies the following 

 three conditions: 

1- 𝐴 × 𝐴𝐷 = 𝐴𝐷 × 𝐴, 

2- 𝐴𝐷 × 𝐴 × 𝐴𝐷 = 𝐴𝐷, 

3- 𝐴𝑘 × 𝐴𝐷 × 𝐴 = 𝐴𝑘. 

2.3 Nilpotent of a matrix [12] 

A square matrix 𝑁 is nilpotent of order 𝑘, if 

𝑁𝑘 = 0,                                                         (2.1) 

where 𝑘 is the smallest positive integer number satisfying (2-1).  

Example: For the matrix 

𝑨 = [
𝟏 𝟏 𝟑
𝟓 𝟐 𝟔

−𝟐 −𝟏 −𝟑
]    , 

we have 𝑁3 = 0, So, 𝑁 is nilpotent of order 3.  

Now, we are ready to directly compute the Drazine inverse of a square matrix. In fact, one 

way is to compute the Jordan canonical form of 𝐴. In other words, if  

A = P [
C 0
0 N

]P−1 ,                                               (2,2) 

in which  

𝑃 is a nonsingular matrix, 

 𝐶 is a nonsingular matrix, 

 𝑅𝑎𝑛𝑘(𝐶) = 𝑅𝑎𝑛𝑘(𝐴𝑘 ), where 𝑘 is the index of 𝐴,  

𝑁 is nilpotent of order 𝑘. 

 In this case, the Drazin inverse 𝐴𝐷 is directly given by  

A = P [C
−1 0
0 0

]P−1, 

 If 𝑖𝑛𝑑(𝐴) = 1, then 𝑁 = 0 in (2.2). 

 Example Compute the Drazin inverse 𝐴𝐷 of the following matrix: 
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A = [
2 −3 −5

−1 4 5
1 −3 −4

]    , 

It is readily seen that 𝑖𝑛𝑑(𝐴) = 2 and also the eigenvalues of 𝐴 are 𝜆1 = 1 with geometric 

multiplicity of 𝜎 = 2 and 𝜆2 = 0 with geometric multiplicity 𝜎 = 1. The Jordan canonical form 

of 𝐴 is given as follows: 

 

A = [

0 −1 1
5

3
−

1

3
−1

−1 0 1

] [
1 0 0
0 1 0
0 0 0

] [

0 −1 1
5

3
−

1

3
−1

−1 0 1

]

−1

    , 

and so 

AD = [

0 −1 1
5

3
−

1

3
−1

−1 0 1

] [
1 0 0
0 1 0
0 0 0

] [

0 −1 1
5

3
−

1

3
−1

−1 0 1

]

−1

, 

Because the inverse of 

[
1 0
0 1

] 

Is the same matrix. 

How to generate a real Singular matrix? 

In this section, we produce a real matrix with positive index. In fact, we produce a singular 

matrix that is applicable to derive the Drazin inverse of such a matrix. For this sake, we 

consider the following problem that is Poisson’s equation with Neumann condition [5,8]: 

{
−∆u = f , in φ = (0,1) × (0,1)
∂u

∂n
= 0,                            on ∂φ,

                                             (2.3) 

Where The Laplacian operator Δ is defined by 

∆=
∂2

∂x2
+

∂2

∂y2
  ,  

∂φ denoted the boundary of φ,  

The Neumann boundary condition is defined by 

∂u

∂n
= 〈∇u, n〉, 

where 𝑛 is the outward normal vector. In order to discretize the problem (2.3), we consider the 

uniform mesh φh as follows:  

φh = {(ih, jh)   ∶     0 ≤  i, j ≤  M} , 

where (𝑥𝑖, 𝑦𝑗) = (𝑖ℎ, 𝑗ℎ) and 𝑀 is a positive integer number. The parameter ℎ is called step 
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length and it is defined by  

h =
1

M
, 

By Taylor expansion, the terms of Laplacian operator Δ can be given by  

∂2u

∂x2
(xi, yi) = "

ui−1,j − 2ui,j+2ui+1,j

h2
+ ϑ(h2), " 

and  

 "
∂2u

∂x2
(xi, yi) =

ui,j−1−2ui,j+2ui,j+1

h2 + ϑ(h2)," 

Hence, a discretization of Poisson’s equation can be given by 

−(
ui−1,j − 2ui,j+2ui+1,j

h2
+

ui,j−1 − 2ui,j+2ui,j+1

h2
) = fi,j,               (2,4) 

 where fi,j = f(xi, yi) . The equation (2.4) can be rewritten by 

ui−1,j − 2ui,j+2ui+1,j

h2
+

ui,j−1 − 2ui,j+2ui,j+1

h2
= −fi,j  , 1 ≤ i, j ≤ M − 1       (2,5) 

 As Figure 2.1 shows, the scheme (2.5) is a 5-point stencil of finite difference scheme as 

follows [4]: 

[
 
 
 
 
               

1

h2

1

h2
    −

1

h2

              
1

h2

        
1

h2

]
 
 
 
 
 

 

 

Figure 2.1. A schematic of the mesh points on unit square. 
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In order to apply the boundary condition, let the Neumann boundary condition is on the 

boundary 𝑥 = 0. At point (0, 𝑦𝑗), we have (see Figure 2.2) 

 

0 =
∂u

∂x
(x0, yi) × (−1),                                                (2,6) 

We use the central difference of first order derivative for (2.6) as follows:  

0 =
u1,j−u−1,j

2h
 ,                                                   (2,7) 

that implies 

𝑢1,𝑗 = 𝑢−1,𝑗    ,   𝑗 = 1,2, ⋯ , 𝑀.                                      (2,8) 

 

Figure 2.2. The mesh points on the lines 𝒙 = 𝟎 and y =
j

M
  . 

 Now, by (2.5), we have 

𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 + 𝑢𝑖−1,𝑗 − 4𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗 = −ℎ2𝑓𝑖,𝑗 ,       1 ≤ 𝑖,𝑗 ≤ 𝑀                (2.9) 

 

For 𝑖 = 0, by (2.8) and (2.9), we have the following extra equations: 

 

𝑢𝑜,𝑗+1 + 𝑢0,𝑗−1 − 4𝑢0,𝑗 + 2𝑢1,𝑗 = −ℎ2𝑓𝑖,𝑗    .     (2.10) 

 

Now, by (2.9) and (2.10), the structure of the matrix coefficient is as follows:  
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The matrix 𝐴ℎ is a singular matrix. 
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