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Identifying reliable biomarkers for Autism Spectrum Disorder (ASD) is crucial for improving early 

diagnosis and intervention strategies. This study explores structural Magnetic Resonance Imaging 

(sMRI) as a biomarker for ASD using advanced machine learning techniques. Linear models (SVM, 

LR) and non-linear algorithms (Deep MLP, DenseNet-201) analyzed sMRI data from the ABIDE 

II dataset, which includes ASD and neurotypical controls (TC). The preprocessing pipeline included 

skull stripping, realignment, normalization, smoothing, Harvard-Oxford segmentation, and feature 

extraction of cortical thickness and volume. Feature vectors from the segmented sMRI served as 

inputs for classification models, with 10-fold cross-validation ensuring robust evaluation. Despite 

rigorous preprocessing and optimization, classification performance was modest. Deep MLP 

achieved the highest accuracy at 57.42%, with a validation accuracy of 58.29%, while SVM and 

LR showed modest accuracy around 56.3%, with challenges in precision and recall. These findings 

underscore the potential of cortical attributes of sMRI as ASD biomarkers and emphasize the need 

for further refinement in preprocessing, feature exploration, and model architecture to enhance 

predictive accuracy. This study highlights the exploration, promise and challenges of integrating 

structural MRI with machine learning for ASD detection.  
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1. Introduction 

Understanding the diverse and complex presentations within the neuropsychiatric continuum 

of Autism Spectrum Disorder (ASD) underscores the critical need for advancing detection 

methods, aiming to improve early intervention strategies and outcomes for individuals across 

the spectrum. Efforts to study ASD detection are driven by the variability in its presentation 

and the profound impact early intervention can have on long-term outcomes. By developing 

reliable detection methods, we can identify ASD earlier, allowing for tailored interventions 

that target specific needs during critical developmental stages. This approach not only 

enhances individual outcomes but also contributes to a deeper understanding of ASD's 

neurobiological underpinnings, paving the way for more effective therapeutic strategies. 

http://www.nano-ntp.com/
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Individuals within the ASD spectrum often exhibits persistent deficits in social 

communication, which can manifest as challenges in understanding nonverbal cues, 

maintaining reciprocal conversations, and developing meaningful relationships. These 

difficulties in social interaction may lead to feelings of isolation and exclusion, affecting their 

overall well-being and quality of life. Additionally, the presence of restricted and repetitive 

patterns of behavior, such as adherence to routines, intense focus on specific interests, and 

repetitive movements or actions, further contributes to the complexity of managing daily 

activities and adapting to changing environments. 

For parents and caregivers, supporting individuals with ASD involves navigating these unique 

challenges while ensuring access to appropriate educational, therapeutic, and community 

resources. The variability in symptoms and strengths among individuals with ASD 

underscores the importance of personalized approaches to intervention and support. Despite 

these challenges, many individuals with ASD demonstrate remarkable strengths in areas such 

as attention to detail, problem-solving abilities, and creativity, highlighting the need for a 

holistic understanding that embraces neurodiversity. 

The gold standard for diagnosing ASD is through extensive clinical evaluation conducted by 

the neurologist, developmental pediatrician and other clinical experts [1] by the use  of Autism 

Diagnostic Observation Schedule (ADOS) [2] and can be with conjunction with Diagnostic 

and Statistical Manual of Mental Disorders (DSM IV and DSM-5)[3]. On-going researches 

aim to uncover the underlying biological and genetic factors contributing to ASD, particularly 

through the identification of reliable biomarkers that can predict autism. These biomarkers are 

essential for improving early diagnosis and intervention strategies, thereby enhancing 

outcomes for individuals across the spectrum. Research navigated through brain anatomy of 

patients [4] with autism has been examined noninvasively by several magnetic resonance 

imaging (MRI) in vivo for the last 25 years [5]. Several MRI techniques have been used to 

identify structural abnormalities in autistic subjects [6]. Because of its high contrast sensitivity 

and spatial resolution, MRI has become the method of choice for brain morphology 

investigation. Structural Magnetic Resonance Imaging (sMRI) has emerged as a promising 

tool in this regard, allowing for detailed anatomical images that facilitate exploration of brain 

abnormalities associated with ASD [7]. 

Structural MRI (sMRI) has afforded researchers various methods to investigate structural 

alterations in the brains of individuals with ASD. One of it is the morphological features such 

as surface area, cortical thickness, cortical curvature, folding index, and volume have been 

used to describe the structural changes in autism [8]. Research has identified that certain areas 

of the brain, including the frontal lobes, amygdala, cerebellum, corpus callosum, and basal 

ganglia, have been associated with autism[9]. Despite identifying these brain regions there is 

still no consensus in the scientific community about the specific structural changes in the brain 

associated with autism. 

The growing emphasis on both fMRI and sMRI in ASD research necessitates the availability 

of large datasets for analysis. In this regard, the Autism Brain Imaging Data Exchange II 

(ABIDE II)  which is a successor of the ABIDE I dataset, was established by the International 

Neuroimaging Laboratory, Psychiatric and Neurodevelopmental Disorders (INLP-PND) 

consortium to aide in various research techniques and strategies. ABIDE II is a publicly 
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available archive of MRI data from individuals with ASD and typically developing 

controls[10].  Various studies have explored brain abnormalities in the cerebellum [11], gray 

matter (GM) volumes [12] and brain functional connectivity (FC) [13] and others using 

statistical methods [14]. Machine learning (ML) models and deep learning (DL) techniques 

have recently become attractive to be applied in the diagnosis of diseases like Parkinson’s [15] 

and epilepsy[16]. Conventional ML methods facilitate the exploration of complex abnormal 

imaging patterns and consider the relationships between different brain regions [17]. In ASD 

detection, however, some of  the researches[18][19][20][21] extensively used both ML and 

DL on both fMRI and sMRI data to capture the effects of ASD  on the brain. sMRI is 

commonly used to examine brain morphology because of its high contrast sensitivity, spatial 

resolution, and the fact that it does not need exposure to ionizing radiation; this is especially 

significant for children and adolescents [22]. sMRI delivers various sequences of brain tissue 

(e.g., T1, T2, and FLAIR) created by altering excitation and repetition durations to view 

multiple brain regions [23]. 

However, the primary challenge in applying machine learning to neuroimaging data for autism 

research is the curse of dimensionality [22],[24], [25]. This phenomenon arises when the 

number of features (p) exceeds the number of samples (n). To mitigate this issue, researchers 

typically explore two main strategies: increasing sample size or reducing feature space through 

methods such as feature selection or feature extraction. Given the constraints of limited 

computational resources in this study, expanding the sample size is impractical. Therefore, the 

study focused on feature extraction, a method that transforms original features obtained from 

segmentation processes into a reduced, yet informative, set of features in a lower-dimensional 

space. This approach aims to capture the essential underlying structures of the neuroimaging 

data more effectively [26]. 

The application of machine learning in ASD diagnosis using ABIDE II data is an opportunity 

to explore novel detection methods with promising potential. This study focuses on leveraging 

morphological brain attributes as inputs to a classifier. It employs a robust preprocessing 

pipeline to enhance raw data for classification purposes. Methodologically, the study 

integrates both traditional linear machine learning techniques such as SVM and LR, and 

advanced deep learning models like DeepMLP and CNN featuring DenseNet, a cutting-edge 

convolutional neural network. These approaches are designed to assess their effectiveness in 

identifying patterns within structural MRI datasets. By investigating the structural brain 

signatures associated with ASD, this research aims to deepen our understanding of the disorder 

and support the development of targeted interventions 

 

2. Materials and Methods 

In this study, fig. 1 shows a comprehensive account of the procedures and tools employed to 

investigate ASD using neuroimaging data from the ABIDE II dataset. The study design 

encompassed a preprocessing pipeline, segmentation, feature extraction, and detection. 
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Figure 1.Block diagram of the proposed methodology 

A. Dataset Acquisition 

The ABIDE (Autism Brain Imaging Data Exchange) Dataset II contains MRI data used in this 

research, comprising a total of 1,054 subjects. The dataset includes two classes: the ASD group 

with 497 subjects and the typical control (TC) group with 555 individuals. For this study, only 

the baseline data was used for the sites that have longitudinal data. Alongside the MRI data, 

phenotypic and other pertinent information about the datasets, such as diagnosis, age, 

handedness, IQ, and more, were also downloaded for reference and labelling purposes. These 

datasets were obtained from the ABIDE II website. The Autism Brain Imaging Data Exchange 

II (ABIDE II) is a large-scale initiative that aggregates and shares brain imaging data from 

individuals with autism spectrum disorder (ASD) and typically developing controls. The 

ABIDE II datasets are contributed by numerous international sites, including the Barrow 

Neurological Institute (BN), Erasmus University Medical Center (EMC), ETH Zurich (ETH), 

Indiana University (IU), Institut Pasteur (IP), Katholieke Universiteit Leuven (KUL), Kennedy 

Krieger Institute (KKI), University of Miami (MIA), New York University 1 and 2 (NYU1, 

NYU2), Olin Neuropsychiatry Research Centre (ONRC), Oregon Health & Science University 

(OHSU),  San Diego State University (SDSU), Stanford University (Stanford), Trinity Centre 

for Health Sciences, University of California, Los Angeles (UCLA), University of California 

Davis (USD), University of Utah School of Medicine(USM), University of Pittsburgh School 

of Medicine (UPSM). These sites contributed a variety of data, including structural and 

functional MRI scans, along with detailed phenotypic information. For this study, specifically, 

the structural MRI dataset was utilized. 

B. Preprocessing pipeline 

To prepare the structural MRI (sMRI) data for machine learning classification, a 

comprehensive preprocessing pipeline was employed to optimize data quality for feature 

extraction and model training. This process commenced with categorization or labeling and 

skull stripping, meticulously removing non-brain tissues such as the skull, scalp, and meninges 

to ensure the analysis focused exclusively on brain tissues. Subsequently, motion realignment 

corrected any head movements during data acquisition, thereby ensuring the model learns from 

an accurate representation of the brain's anatomy. Spatial normalization was performed to 
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standardize the anatomical space across different images, facilitating enhanced data 

comparability and consistency in analysis. Intensity normalization adjusted the intensity 

values of the NIfTI images to a range of [0, 1], addressing variations in voxel intensity caused 

by scanner settings or head position. This normalization process, which used the minimum 

and maximum intensity values within each image, was crucial for mitigating technical artifacts 

and allowing the model to concentrate on underlying anatomical features. By integrating these 

preprocessing steps, high-quality, standardized representations of brain anatomy were 

achieved within the MRI data. This meticulous preprocessing ultimately enhances the 

robustness and generalizability of machine learning models applied to brain image 

classification tasks. 

C. Cortical Segmentation  

In this study, cortical parcellation was conducted using the Harvard-Oxford (HO) Atlas, which 

segments the cortical surface of the brain into distinct regions based on anatomical landmarks, 

aligning each subject's brain anatomy to a standardized map. The HO atlas used in this study 

was downloaded from https://identifiers.org/neurovault.image:1698. During the parcellation 

process, the preprocessed structural MRI (sMRI) data was segmented into predefined regions. 

Each voxel in the MRI image was assigned a label corresponding to a specific cortical region 

as defined by the atlas. 

Following the parcellation, cortical thickness and cortical volume were extracted from the 

segmented regions. These morphological features were then utilized as input for various 

machine learning classifiers, facilitating the analysis and classification of the data. Output of 

this step are numerical feature matrices of cortical thickness and cortical volume.  

D. Machine Learning 

Various classifiers, both linear and non-linear, were employed to classify Autism Spectrum 

Disorder (ASD) using features extracted in earlier stages of the study. Prior to classification, 

cortical thickness and cortical volume matrices were concatenated for each subject. This 

concatenation ensured that each subject's features were represented as a unified input vector, 

facilitating the classification process across different machine learning models. 

A linear kernel SVM model was employed in this study. X_train and y_train represent the 

training data used to train the Support Vector Machine (SVM) classifier. X_train is a matrix 

where each row corresponds to a subject's feature vector (concatenated cortical volumes and 

thickness), and y_train is a vector of labels indicating whether each subject has ASD (1) or is 

a Typical Control (0). These data are learned by the model and finds a linear hyperplane that 

optimally separates the feature vectors of ASD and TC subjects based on their cortical volume 

and thickness features. The dataset is divided into 10 subsets (folds). During each iteration, 9 

folds are used for training, and 1 fold is used for validation. This approach ensures that every 

data point is used for both training and validation exactly once, providing a robust estimate of 

the model’s performance. 

 Linear regression was implemented Logistic Regression employed to classify between ASD 

and TC based on cortical volume and cortical thickness features extracted from MRI data. 

Stratified K-Fold cross-validation is used to split the data into training and validation sets 

across 10-fold cross validation.  This ensures that each fold preserves the percentage of 
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samples for each class. Within each fold, a logistic regression model is trained on the training 

set on both classes. The model predicts labels (y_pred) and probabilities (y_proba) on the 

validation set (X_test). y_pred indicates whether each MRI sample is predicted to belong to 

the ASD group (1) or the TC group (0). 

Moreover, DenseNet-201 is a convolutional neural network architecture that belongs to the 

DenseNet family. It is a variant with 201 layers. It has been designed to be deep while 

maintaining efficiency in terms of computational resources and memory usage. Initially, this 

model requires different dimensions of feature data so, data is first reshaped to fit the 

classifier’s requirements. The output layer is then set to a binary output layer ready for 

classification. Stochastic Gradient Descent with Momentum (SDG) is used as an optimizer 

that incorporates momentum to accelerate convergence in the gradient descent process. 

DenseNet-201 effectively leverages its deep learning capabilities to learn discriminative 

features from cortical MRI data, distinguishing between ASD and TC subjects based on their 

cortical structure. Cross-validation approach ensures that the model's performance is robustly 

evaluated, providing insights into its generalization ability and reliability across different data 

splits. 

Finally, a Deep MLP (Multilayer Perceptron) is utilized as a classification model where it is a 

type of artificial neural network that consists of multiple layers of neurons, each layer fully 

connected to the next one. Beginning with the integration of cortical volume and thickness 

features extracted from MRI scans, the process unfolds through a series of meticulously 

orchestrated steps. These include the standardization of input data to ensure uniformity in 

feature contributions, followed by a cross-validation strategy that divides the dataset into folds 

for robust model evaluation. The heart of the operation lies in a Deep MLP configuration, 

comprising multiple densely connected layers enriched with ReLU activations and dropout 

regularization to foster complex pattern recognition while guarding against overfitting. 

Through iterative training epochs facilitated by Adam optimization and monitored by binary 

cross-entropy loss, the model learns to predict probabilities of ASD classification with sigmoid 

output activation. Sigmoid are in the range [0,1]. This property makes it suitable for binary 

classification tasks where the output can be interpreted as a probability of belonging to one 

class (e.g., ASD or TC). This approach not only aims for high accuracy but also strives to 

uncover meaningful insights into cortical structural differences associated with ASD, fostering 

advancements in neuroscientific understanding and diagnostic precision. 

 

3. Results and Discussion 

Table 1. Average performance for each model in a 10-fold cross validation 
Model Accuracy Precision Recall AUC Validation Accuracy 

SVM 0.5633 NaN 0.000145 0.5256 0.5633 

LR 0.5631 0.4609 0.0018 0.5279 0.5631 

Deep MLP 0.5742 0.6892 0.1363 0.5949 0.5829 

DenseNet201 0.5321 0.60596 0.39139 - 50.4763 

Table 1 shows the mean accuracy, precision, recall, AUC, and validation accuracy of each 

classifier in classifying cortical features from the preprocessed sMRI data. SVM achieved an 

accuracy of 56.33% with consistent performance in validation accuracy. However, precision 
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could not be calculated, because of potential issues factor calculating theaffecting precision. 

Similarly, LR achieved an accuracy of 56.31% and a validation accuracy of 56.31%. Its 

precision (46.09%) and recall (0.18%) were relatively low, indicating challenges in correctly 

identifying positive cases. 

Moreover, DenseNet201 had the lowest accuracy at 53.21% and a validation accuracy of 

50.48%. While it demonstrated moderate precision (60.60%) and recall (39.14%), its overall 

performance in discriminating between classes was suboptimal. Deep MLP, on the otherhand 

demonstrated the highest accuracy among the models at 57.42%, with good validation 

accuracy (58.29%). It also showed the highest average precision (68.92%) and moderate recall 

(13.63%), suggesting it could effectively capture complex patterns in the data. 

Based on the results, linear classifiers such as SVM and LR exhibited comparable but modest 

accuracy around 56.3%, indicating their limited capability to distinguish between ASD and 

typical controls. However, they struggled to achieve high precision and recall, highlighting 

potential limitations in capturing the complex patterns inherent in the data. In contrast, the 

non-linear Deep MLP model outperformed the linear classifiers with an accuracy of 57.4%, 

demonstrating superior performance in learning intricate data relationships. Its higher average 

precision (68.9%) and moderate recall (13.6%) suggest that the Deep MLP may be more 

suitable for tasks requiring nuanced classification of ASD based on structural indices. 

 

4. Conclusions 

The conclusion of this study underscores the potential of machine learning models, particularly 

deep learning approaches like Deep MLP, in classifying autism spectrum disorder (ASD) 

based on cortical structural features. While linear classifiers such as SVM and LR provide a 

baseline, they exhibit limitations in capturing complex relationships within the data. The 

superior performance of Deep MLP in accuracy and ability to discern patterns suggests its 

suitability for more nuanced ASD classification tasks. However, the models currently fall short 

of medical standards due to challenges in interpretability and integration into clinical 

diagnostic frameworks. Future research should focus on enhancing model interpretability, 

potentially through multimodal dataset integration, to improve clinical utility and reliability in 

diagnosing ASD. 

 

5. Implications 

Based from the results of the experiments, the  Deep MLP model outperformed SVM, LR, and 

DenseNet201 in terms of accuracy and precision, suggesting that its ability to learn complex 

representations from your data might be more suitable for  this kind of classification task. 

Regarding the robustness of the models, the variability observed across different metrics 

(accuracy, precision, recall) underscores the importance of evaluating model robustness and 

generalizability across diverse datasets and potential biases. 

In terms of clinical relevance, the study's results suggest that while the models hold potential 

for applications like diagnosis or risk assessment, they currently do not meet medical 

standards. This is primarily due to the necessity for improved explanation of model decisions 
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and their integration into established diagnostic frameworks. Therefore, relying solely on 

cortical features such as thickness and volume may not reliably detect the presence or absence 

of the disorder. To enhance classification performance, it is advisable to consider multimodal 

datasets that integrate other types of data, such as resting-state data from the ABIDE dataset, 

which could provide complementary insights into autism spectrum disorders. 
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