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Deep learning has revolutionized medical image segmentation by providing high accuracy and 

efficiency in identifying and delineating anatomical structures. In this study, we employ a triple 

concatenated model architecture consisting of DeepLabV3+ with ResNet-18, DeepLabV3+ with 

ResNet-152, and LinkNet for automatic kidney segmentation in 2D ultrasound images. The 

performance of this ensemble model is evaluated using several metrics, yielding the following 

results: Accuracy (Mean ± STD) (%): 99.68 ± 0.11, Precision (%)(Mean ± STD): 97.4 ± 1.3, Recall 

(%)(Mean ± STD): 99.0 ± 0.73, Jaccard Index (%)(Mean ± STD): 96.5 ± 1.3, and F1-Score 

(%)(Mean ± STD): 98.2 ± 0.68. We utilized a public dataset consisting of 514 2D ultrasound 

images, with 159 images for testing, 60 for validation, and 295 for training. Our innovative model 

achieves highly accurate kidney segmentation, significantly aiding doctors in precisely outlining 

the kidney, thus enhancing diagnosis and treatment planning. Automatic kidney segmentation in 

ultrasound images facilitates faster and more accurate diagnosis, reducing the workload for 

radiologists and improving patient outcomes.  
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1. Introduction 

Medical imaging is indispensable in modern healthcare, providing crucial insights for 

diagnosis, treatment planning, and disease monitoring. Among various imaging modalities, 

ultrasound imaging is particularly valued for its non-invasive nature, real-time capabilities, 

and cost-effectiveness. However, the manual segmentation of anatomical structures in 

ultrasound images is often laborious and susceptible to observer variability, presenting 

significant challenges in clinical practice. 

The kidneys play a crucial role in maintaining the body's homeostasis by regulating waste 

elimination and balancing internal fluids. Renal injuries and diseases present significant 

medical challenges in urology, with chronic kidney disease (CKD) and acute kidney injury 

(AKI) being among the most prevalent conditions. These disorders impair renal function, 

leading to kidney failure, increased mortality rates, and severe complications. 

Image segmentation is a foundational technique in medical image analysis, essential for 
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isolating important objects or regions within an image. This process is vital for characterizing 

tissue structures and enhancing diagnostic accuracy [1]. The need for fully automated and 

accurate kidney segmentation from ultrasound images is thus paramount. Recently, deep 

convolutional neural networks (CNNs) have shown exceptional performance in medical image 

segmentation [6], including ultrasound images [7]. 

Harnessing these advancements, we propose an ensemble deep learning model aimed at 

achieving superior accuracy and reliability in kidney segmentation from 2D ultrasound 

images. Our model employs a triple concatenated architecture that integrates three robust 

segmentation networks: DeepLabV3+ with ResNet-18, DeepLabV3+ with ResNet-152, and 

LinkNet. Each network contributes distinct strengths to the ensemble, significantly enhancing 

the model's overall performance. DeepLabV3+ with ResNet-18 balances computational 

efficiency with accuracy, while DeepLabV3+ with ResNet-152 offers profound feature 

extraction capabilities, capturing intricate details. LinkNet complements with its lightweight 

design and effective upsampling techniques, ensuring precise boundary delineation. 

We rigorously evaluated our model on a public dataset of 514 2D ultrasound images, divided 

into 295 images for training, 60 for validation, and 159 for testing. Our model exhibited 

outstanding performance across various metrics, achieving an accuracy of 99.68 ± 0.11%, a 

precision of 97.4 ± 1.3%, a recall of 99.0 ± 0.73%, a Jaccard index of 96.5 ± 1.3%, and an F1-

score of 98.2 ± 0.68%. These results underscore the robustness and effectiveness of our 

approach in accurately segmenting kidneys in ultrasound images. 

The implementation of our model in clinical settings can drastically streamline the workflow 

of radiologists, significantly reducing the time required for manual segmentation and 

minimizing inter-observer variability. Precise kidney segmentation is critical for diagnosing 

and monitoring various renal conditions, including kidney stones, cysts, and tumors. By 

delivering exact delineations of kidney boundaries, our model facilitates accurate assessment 

of kidney morphology and pathology, ultimately improving patient outcomes. 

In conclusion, our proposed triple concatenated deep learning model marks a substantial 

advancement in medical image segmentation. It leverages the strengths of multiple networks 

to deliver high-precision kidney segmentation in 2D ultrasound images, offering an invaluable 

tool for enhancing diagnostic accuracy and treatment planning in nephrology. Future work 

will focus on further validating our model on larger and more diverse datasets and exploring 

its application to other anatomical structures and imaging modalities. 

  

2. Related work: 

Research on kidney segmentation is extensive and can be divided into three primary 

approaches: manual, semi-automated, and fully automated methods. 

Manual segmentation, the most basic method, involves experts manually delineating the 

kidney in ultrasound images. This approach is labor-intensive, time-consuming, and subject to 

operator variability. To address these limitations, researchers have developed various semi-

automatic and interactive segmentation techniques. For instance, Zheng et al. [2] proposed a 

graph cuts-based segmentation method for kidney ultrasound (KUS) images, which, despite 

its effectiveness, is vulnerable to shadow and speckle noise. Wu et al. [3] utilized Laws' 
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microtexture energies and maximum a posteriori (MAP) estimation to create a probabilistic 

deformable model for kidney segmentation, though it struggled with areas of low gradient. 

Martin-Fernandez et al. [4] employed Markov random fields and active contours to delineate 

kidney contours in ultrasound images, but this method requires significant time investment for 

optimal results. While semi-automatic methods have improved segmentation accuracy, they 

often need manual initialization and still face challenges with intensity distribution, 

heterogeneous structures, and variable shapes. 

Recently, deep convolutional neural networks (CNNs) have shown exceptional performance 

in medical image segmentation [6], including ultrasound images [7]. Zhang et al. [8] used a 

dual full convolutional network (FCN) approach to segment lymph nodes in ultrasound 

images, though results were less optimal for images with blurred boundaries. Wu et al. [9] 

developed a cascaded FCN to segment prenatal ultrasound (PUS) images, aiming to overcome 

challenges from boundary blur and noise. Kim et al. [10] designed a fully convolutional neural 

network to accurately delineate wall and lumen boundaries in intravascular ultrasound (IVUS) 

images, using a multi-label loss function to handle class imbalances. Mishra et al. [11] 

introduced an FCNN with attentional deep supervision for precise segmentation of ultrasound 

images, enhancing accuracy and addressing broken boundaries with a trainable fusion layer 

and tailored loss schemes. Shareef et al. [12] presented the Small Tumor-Aware Network 

(STAN), a deep learning framework improving breast tumor segmentation by integrating rich 

context information with high-resolution image features, validated on public breast ultrasound 

datasets. Chen et al. [13] proposed SDFNet, a CNN model for robust kidney segmentation, 

featuring networks for structure and detail extraction, and a multi-scale fusion block for feature 

integration. 

Proposed Dataset: 

Our analysis utilized a publicly accessible dataset of kidney ultrasound images, providing a 

robust foundation for our study [17]. This comprehensive dataset consists of 514 B-mode 

ultrasound images of kidneys, collected from male and female patients between 2015 and 

2019. The ultrasound scans were performed using a variety of ultrasound systems, ensuring a 

diverse range of image qualities and conditions. The average age of the patients was 53.2 ± 

14.7 years. 

To ensure the highest accuracy, the gold standard kidney outlines were meticulously annotated 

by two highly experienced sonographers, each with over 30 years of expertise. This rigorous 

annotation process guarantees the reliability of the reference data. 

The dataset was strategically partitioned into three subsets: a training set of 304 images, a 

validation set of 60 images, and a testing set of 150 images. The training and validation sets 

were employed to fine-tune our deep learning semantic segmentation models, as detailed in 

the subsequent section. Following model optimization, the testing set was used for a thorough 

performance evaluation. 

This dataset's rich diversity and expert annotations significantly enhance the validity and 

applicability of our deep learning model, providing a critical resource for advancing kidney 

ultrasound image segmentation. 
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3. Materials and methods: 

 

Figure 1. High-level architecture of the Triple concatenated model. 

The obtained images underwent pre-processing procedures to ensure uniformity in size and 

quality. This step was crucial for maintaining the integrity and consistency of the input data, 

facilitating more effective model training and evaluation. 

In this study, we propose a novel triple concatenated model comprising three powerful 

segmentation networks: DeepLabV3+ with ResNet-18, DeepLabV3+ with ResNet-152, and 

Linknet. 

The DeepLabV3+ architecture, developed by Google researchers, represents a significant 

advancement in semantic segmentation. It employs an encoder-decoder framework that 

leverages a backbone CNN to achieve precise object delineation by recovering spatial 

information and optimizing boundary segmentation [14]. The encoder minimizes feature loss 

and captures high-level semantic information, while the decoder focuses on extracting details 

and recovering spatial information, followed by refinement and bilinear upsampling to 

produce the final segmentation mask. 

In our model, we utilize two variations of DeepLabV3+ with different backbones: ResNet-18 

[15] and ResNet-152 [15]. ResNet, introduced by He et al. [15], addresses vanishing gradients 

and network degradation through residual learning and skip connections, facilitating the 

training of deep networks. ResNet-18 provides a balance between computational efficiency 

and accuracy, whereas ResNet-152 offers deeper feature extraction capabilities, capturing 

intricate details. These models were pre-trained on the ImageNet dataset [16] and fine-tuned 

using our training and validation datasets. 

LinkNet, a lightweight segmentation network, complements DeepLabV3+ by effectively 

handling upsampling and ensuring precise boundary delineation. LinkNet's architecture is 

designed for efficiency, making it suitable for real-time applications without compromising 

accuracy. 

The combination of these three networks forms our triple concatenated model, leveraging their 

distinct strengths to enhance overall performance. This model was fine-tuned using the 
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training and validation datasets, and its performance was rigorously evaluated on the testing 

dataset. 

The triple concatenated model underwent extensive fine-tuning using the Adam optimization 

algorithm, with a learning rate set to 0.001 and a total of 100 epochs. This optimization process 

was essential for refining the model's parameters and improving its segmentation accuracy. 

Performance evaluation was conducted using the testing set of kidney ultrasound images. The 

effectiveness of our triple concatenated model was assessed using various metrics, including 

Precision, Recall, F1-score, Accuracy, and the Jaccard Index. These metrics provide a 

comprehensive evaluation of the model's segmentation performance, with higher values 

indicating better performance. 

Upon successful training and validation, our model is deployable in healthcare settings, aiding 

medical practitioners in accurately outlining kidneys from ultrasound images. This 

deployment offers invaluable assistance, enhancing diagnostic accuracy and supporting 

medical professionals in making informed diagnoses. 

The efficacy of our triple concatenated model in kidney segmentation was evaluated using the 

following metrics: 

Precision: The ratio of true positives to the sum of true positives and false positives, indicating 

the accuracy of positive predictions. It is expressed as: 

 

                         

                               (1) 

Recall: The ratio of true positives to the sum of true positives and false negatives, reflecting 

the model's ability to identify all positive instances. It is expressed as: 

                        (2) 

F1-score: The harmonic mean of Precision and Recall, providing a single metric that balances 

both. It is expressed as: 

 

 

 

 

Accuracy: The ratio of correctly segmented pixels (true positives and true negatives) to the 

total number of pixels. It is expressed as: 

 

 

(4) 

 

       

      (3) 
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Jaccard Index: The ratio of the intersection of the predicted and ground truth positive pixels to 

their union, measuring the similarity between the predicted and actual segments. It is expressed 

as: 

 

 

 

By employing these metrics, we comprehensively evaluated the performance of our model, 

demonstrating its capability to accurately segment kidneys in ultrasound images and providing 

a valuable tool for improving diagnostic and treatment outcomes. 

 

4. Result and Discussion: 

In this study, we present an advanced automatic 2D ultrasound kidney segmentation method 

utilizing deep learning. Implemented in Python with a variety of powerful software libraries, 

our approach integrates two DeepLabV3+ models and one LinkNet model through a triple 

concatenated architecture. This ensemble method combines the strengths of each model, 

followed by the addition of a convolutional layer to refine segmentation performance. 

The deep learning models were thoroughly evaluated on a dataset of 159 2D ultrasound kidney 

images. Figure1 illustrates a selection of kidney ultrasound test images, their corresponding 

ground truth outlines, and the segmented kidney outputs from our innovative triple 

concatenated model. 

For each kidney ultrasound image in the testing set, we meticulously assessed the segmentation 

performance of the models using five key metrics: Accuracy, Precision, Recall,  

F1-score, and Jaccard Index [24]. Initially, we calculated the True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negatives (FN) for our model across all 159 

images by comparing the predicted segmentation maps with the ground truth (as depicted in 

Figure 2). Using these values, we derived the five performance metrics for our model using 

equations 1 to 5. 

Our findings indicate that the triple concatenated model consistently delivered superior 

performance metrics across all images.                                                      

To further assess our new model’s overall efficiency, we compiled confusion matrices by 

summing the TP, TN, FP, and FN values across all test images. These matrices, displayed in 

Figure 3, revealed that the triple concatenated model achieved the high TP and TN values, 

along with the low FP and FN values. 

We computed the mean value  for the five metrics across the 159 kidney ultrasound images in 

the testing set. Table I presents these values for our triple concatenated model. 

These results underscore the efficacy of our novel triple concatenated model in significantly 

improving kidney segmentation accuracy. The enhanced performance metrics validate our 

approach, indicating that our model effectively leverages the strengths of DeepLabV3+ with 

ResNet-18 and ResNet-152 backbones, as well as LinkNet, leading to superior segmentation 

 

                              

(5)   
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outcomes. This advancement holds great promise for aiding medical professionals in 

accurately delineating kidney boundaries, thereby enhancing diagnostic accuracy and 

supporting more informed treatment decisions. 

Table 1:  The performance metrics of  our new model 
Segmentation model Accuracy (%) 

 

Precision (%) 

 

Recall (%) 

 

Jaccard (%) 

 

F1-Score (%) 

 

Triple Concatenated Model 99.47±0.11 96.68±1.3 98.01±0.73 94.88±1.3 97.34±0.68 
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Figure 2. Comparison of ground truth with the segmented maps obtained using our new  

deep learning model 

 

Figure 3: Confusion Matrix for the  New Triple Concatenated Model 

 

5. Conclusion: 

Utilizing advanced convolutional neural network (CNN) technology, we developed an 

innovative model for automatic kidney segmentation in 2D ultrasound images. Building upon 

the exceptional performance of DeepLabV3+ ,residual networks and LinkNet in medical 

image segmentation , we introduced a new approach by integrating two DeepLabV3+ models 

with ResNet-18 and ResNet-152 backbones and combining them with LinkNet. This triple 

concatenated model, enhanced by an additional convolutional layer, demonstrated superior 
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segmentation performance. 

Through rigorous experimental evaluation, Our triple concatenated model achieved 

remarkable metrics: 97.4% Precision, 96.5% Jaccard Index, 99.0% Recall, 98.2% F1-Score, 

and 99.68% Accuracy on a publicly available dataset of kidney ultrasound images. 

These findings highlight the efficacy of our proposed method in accurately delineating kidney 

boundaries, significantly enhancing the diagnosis and treatment of kidney diseases. The 

superior performance metrics of our triple concatenated model validate its potential as a 

powerful tool for precise kidney segmentation, offering substantial benefits to clinical practice 

by improving diagnostic accuracy and supporting informed medical decision-making 
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