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The production of hydroelectric power is essential for supplying the world's need for sustainable 

energy. Sustainable water conservation and reliable electricity generation depend on effective 

hydroelectric reservoir control. In this work, Boosted Grey Wolf Optimized Adaptive Random 

Forest (BGWO-ARF), a unique method for forecasting water levels in hydroelectric reservoirs, is 

presented. To improve forecasting accuracy, the suggested model combines the best optimization 

qualities of the GWO methodology with the adaptive abilities of the RF algorithm. Integrating 

hydrological factors, weather conditions and historical reservoir volume information, the BGWO-

ARF represents the intricate dynamics of changes in water level. Numerous tests were carried out 

using India's hydroelectric reservoir dataset to assess the effectiveness of suggested strategy, which 

revealed greater prediction accuracy compared with previous techniques. To examine the efficiency 

of the proposed technique compared to standard processes, the suggested method achieves RMSE, 

MAE and RAE. The findings show that the BGWO-ARF method improves the accuracy and 

dependability of water level forecasts, which helps decision makers make well-informed choices 

for best possible reservoir upkeep and operation. This study gives important insights into 

sustainable use of water resources in the environment of hydroelectricity production and advances 

 



                                          Anticipating Hydroelectric Reservoir Water… Naresh Kaushik et al. 1040  
 

Nanotechnology Perceptions Vol. 20 No. S2 (2024) 

predictive models in hydrology. 
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1. Introduction 

The water levels in hydroelectric reservoirs are a significant component in the efficient and 

environmentally acceptable production of electricity. By collecting and retaining water for 

eventual consumption in electricity generation, these reservoirs constructed by damming rivers 

perform a significant importance in hydroelectric power plants [1]. To balance electrical needs, 

reduce the possibility of flooding and support a variety of downstream environmental 

structures, it is essential to evaluate and manage ideal water levels in these reservoirs [2]. 

Hydroelectric reservoirs provide effective electricity production by controlling water levels, 

ensuring a steady supply of renewable energy with less environmental implications than 

conventional power plants [3]. Water resource sustainability and regional growth are assisted 

when water levels can be managed for irrigation, residential water supply and commercial 

consumption. 

Hydroelectric reservoir's water levels perform an essential significance in maintaining 

sustainability in electricity development and water resources administration [4]. The use of 

machine learning (ML) techniques indicates possibilities as a means to anticipate prospective 

reservoir water levels, which would improve management preparation and decision-making 

[5]. ML algorithms can forecast water levels by employing previous information, climatic 

structure as well as ecosystem characteristics, enabling adaptive administration of flood 

administration, electricity generation and environmental conservation [6]. This revolutionary 

technique enables a water-energy connection that is economically efficient and adaptable 

while simplifying the optimization of hydroelectric power generation and reducing the 

challenges of water scarcity and flooding. The use of machine learning to analyze water levels 

in hydroelectric reservoirs has the potential to transform water management and achieve our 

energy requirements in the long term [7, 8]. 

Estimates of reservoir water levels can be complicated by considerations such as a lack of 

sufficient data, difficulties in including extensive environmental characteristics and limitations 

in adaptation to evolving hydrological circumstances. By applying current optimizing 

methods, this model will generate accurate forecasts, assuring effective resource 

administration and ecological electricity production. In development, reservoirs can be 

managed effectively, leading to improved water resource planning and higher general 

hydroelectric energy production. 

The additional divisions of this article are as follows: Introduces related works in part 2, part 

3 discusses the methodology, part 4 results and discussion and part 5 concludes the paper. 

 

2. Related works 

According to the author of, [9] presented a features-reducing method such as principal 
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component analysis and feature grouping techniques with ML regression methods, including 

artificial neural networks (ANN) and support vector machines (SVM). They demonstrate that 

ML regression algorithms might estimate hydroelectric production. The study [10] presented 

a deep learning-based technique for predicting reservoir outflow and “recurrent neural network 

(RNN), long short-term memory (LSTM) and gated recurrent unit (GRU)” to develop 

predictive algorithms for the reservoir’s outflow. The findings demonstrate that the three 

developed algorithms acquire the reservoir operation regulations from past operating data and 

provide an operating strategy for the reservoir's flood management and power generation. 

Article [11] developed an ANN model that was dependent on past hydrological data, 

comprising stream flow, dam updates and reservoir storage levels at the beginning and end of 

the year. This ANN was the utility of provided data on water losses, ultimate storage and water 

level variations for improved reservoir performance. 

To presented an ANN on the basis of stream flow predictions and the reservoir simulation. 

Two multistep-ahead prediction techniques, identified as Close-Loop Prediction (CLP) [12] 

and Open-Loop Prediction (OLP), were used to forecast streamflow. Subsequently associated 

with the most potential streamflow predictions constructed with the CLP technique over the 

summer, the reservoir modeling demonstrated significant efficiency for reservoir level 

projections. The developed a deep learning model based on the LSTM (13) network to predict 

the regular water condition of Dongting Lake. The findings of the experiment, the water level 

in Dongting Lake simplified consistently during the months of September as well as 

November, Three Gorges Dam (TGD) was impounded and improved between dry seasons, 

when TGD was supplemented. The developed a deep reinforcement learning (DRL) [14] 

architecture that was built based on a specifically established information samples structure 

and a deep Q-network (DQN). The suggested DRL models for annual hydropower production 

and systems dependability outperform the comparative simulations. According to the author 

of, [15] presented a new framework based on four different types of delicate structures: 

“support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), ANN and 

radial basis function neural network (RBFNN)."The results of employing the suggested 

method demonstrate that the supervised (hybrid) models perform better than delicate models 

to minimize the inaccuracy in water level predictions. 

Author [16] evaluated a multiple linear regression (MLR), ANN, extreme learning machine 

(ELM) and SVM performed when attempting to predict the rule for operating a hydroelectric 

reservoir. The standard SGM method was used as a reference standard for the comparison. 

The experiments demonstrate that the three AI algorithms tested (ANN, SVM and ELM) 

outperformed the traditional MLR and scheduled graph approach. To presented a Bayesian 

Deep Learning technique [17] that required considering the variability of the model's 

parameters and the probability of the incoming data. Standards for operating reservoirs in 

actual moments were essential, with the immediate reservoir condition and anticipated inflows 

constituting the primary considerations. The experimental findings demonstrate that the 

suggested Bayesian deep learning method was more effective at maximizing hydropower 

production than the standard technique. To employed the Smart Climate Hydropower Tool 

(SCHT) [18], a revolutionary, cloud-based interactive technology that reflect data-driven, 

machine learning-based algorithms for river discharge forecasting. Implementing SCHT 

generated findings that supported the employment of ML algorithms with complicated and 
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recurrent architecture for generating an effective periodic dynamical prediction of the total 

river discharge input across the application investigations.  

 

3. Methodology 

In this study, we present Boosted Grey Wolf Optimized Adaptive Random Forest (BGWO-

ARF), a novel technique for predicting water levels in hydroelectric reservoirs. The dataset 

was developed by utilizing five years of collecting information on the water level to calculate 

the flow rate and water level at “Yedgaon Dam”, a collection with its individual output and 

reservoir. 

3.1 Dataset 

The significance of the investigation is to develop forecasts for the overall water level and 

regular outflow estimates at Yedgaon. The five reservoirs that constitute together the Kukadi 

integrated system were located in the Sahyadri hill range in the Western Ghats of Maharashtra, 

which provides the experimental area. The examination comprises the greater administrative 

area in the Pune, Solapur and Ahmednagar administrations. The Google image of the Kukadi 

complex is provided in Figure 1 below to provide context for the location under examination.  

 

Figure 1: Google image of the Kukadi complex [Source: Google map] 

The complete Kukadi development has a potential irrigable management surface of 156278 

Ha. Daily distribution measurements and complete water level statistics for the Kukadi 

irrigation project's Manikdoh, Dimbhe, Wadaj, Pimplgaojoge and Yedgaon were collected 

from the hydrology administration (Kukadi Hydrology Section No.1, Narayangaon) between 

June 1, 2015 and August 31, 2019. Each station has access to daily flow measurements from 

592 inspections and complete water level statistics from 1548 occurrences. The quantitative 

characteristics of the regular outflow are shown in Table 1 and complete water level empirical 

characteristics are displayed in Table 2 [21]. 
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Table 1: Characteristics of regular outflow at each investigation site [21] 
Stations Manikdoh Wadaj Dimbhe Pimpalgaojoge Yedgaon 

Average value 276 69 480 258 145 

Standard Deviation 456.30 97.77 192.40 452.09 881.01 

Range of parameters 0 to 1250 0 to 364 0 to 650 0 to 1450 138 to 11966 

Table 2: Complete water level statistics analytical characteristics for the locations under 

assessment [21] 
Stations Wadaj Yedgaon Pimpalgaojoge Manikdoh Dimbhe 

Range of parameters 
699.69 to 

717.53 
634.22 to 641 673.01 to 686.62 

681.75 to 

709.99 

682.55 to 

719.15 

Standard Deviation 4.43 8.42 3.31 8.42 11.83 

Average value 712.57 694.95 682.56 694.95 705.30 

3.2 Boosted Grey Wolf Optimized Adaptive Random Forest Approach 

Economically dependable electricity generation can be attained through the combination of 

various methods of operation, which allow for optimized reservoir management and power 

generation. Together, these improvements in reservoir water level prediction and optimization 

of hydroelectric authority and resource management constitute a significant step forward in 

the field. 

3.2.1 Boosted Grey Wolf Optimization 

The entirety reduction techniques involve the difficult problem of determining the global 

optimum. Approximation to the global optimum can be considered as happening in two 

distinct but related processes in population-based optimization techniques. It's important to get 

people distributed across the complete searched environment in the initial phases of 

optimization. Instead of gathering towards optimal solutions, they should spread outward to 

investigate the possibilities. Individuals must use the knowledge they have gained to converge 

on the global optimum in the subsequent phases. By establishing a compromise between these 

two phases, we can converge to the global optimum using GWO after fine-tuning the 

parameters A and A. Local optimum avoiding is assisted by various updates to individual-

based algorithms, although evidence demonstrates that population-based algorithms 

accomplish better when presented with this constraint. The optimization procedure is separated 

into two competitive achievements in population-based algorithms, exploring and exploiting. 

Exploring generates unpredictable and unexpected adjustments in potential responses. The 

method translates into enhanced response variability and comprehensive spectrum 

investigation. Exploitation, on the alternative moment, attempts to enhance the integrity of 

solutions by conducting local investigations proximal to the potential solutions identified 

during the inspection. Prospective alternatives are required to make reduced extreme 

modifications and conduct localized searches in subsequent period. Exploring and extraction 

are competing objectives and encouraging one serves to undermine the individuals. When 

these two objectives are coordinated, population-based algorithms can produce an efficient 

simulation of the global optimal. In one sense, an algorithm can't reliably approximate the 

global optimum if it explores the examined region. Relying on simple exploiting contributes 

to prevent in the progress of local optimums and, once again, a poor approximation of the 

optimum. The GWO shift between exploring and extraction is controlled by the varying values 

of 𝛼 and𝐵. They expend part of the repetitions exploring (|𝐵| ≥ 1)and the remaining part 
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exploiting(|𝐵| < 1). As the discovery space expands further, the possibility of remaining at a 

local optimum decreases. One way to increase the rate of exploration is by substituting 

quadratic measures with exponential measures to decrease over a series of iterations. 

Considering excessive unpredictability, frequent investigation is uncertain to generate 

significant optimization consequences. But excessive exploitation is associated with 

inadequate opportunity. Thus, there should be a middle ground between discovery and 

exploitation. Using the following modified equation, the amount of a GWO impacts from 2 to 

0. 

𝑏 = 2 (1 −
𝑠

𝑆
)                         (1) 

Maximum repetitions, denoted by 𝑆 and the present repetition, denoted by𝑡, are conceivable. 

For the gradual decrease of BGWO, they employ an exponential equation. 

𝑏 = 2 (1 −
𝑠2

𝑆2)          (2) 

The percentage of iterations in investigation against extraction utilizing this exponential 

degradation equation is defined at 80% and 40%, correspondingly. 

3.2.2 Adaptive Random Forest 

Numerous investigations demonstrate that the random forest algorithm provides superior 

categorization efficiency, noise acceptance and resistance to over fitting. To enhance the 

reliability of algorithm classification, the ARF algorithm described in the investigation utilizes 

an adaptive evaluation procedure of characteristics to fine-tune the method of decision tree 

node separation. Because of these variations in features, decision trees are generated using 

distinct component splitting techniques on the identical data set might resemble very different 

from one another. The results indicate that random forest categorization effectiveness differs. 

It is suggested that the decision tree determines the appropriate characteristic to separate the 

nodes and divide the node-separating technique into a linear combination to generate a new 

separating rule, which is implemented in the node characteristic selection and separation. The 

node-separating technique displays the distribution coefficient and informational benefit by 

separating the dataset 𝐶 dependent on characteristic 𝑎. 

𝐺𝑎𝑖𝑛 (𝐶, 𝑏) = 𝐸𝑛𝑡(𝐶) − ∑
|𝐶𝑢|

|𝐶|
𝑈
𝑢=1 𝐸𝑛𝑡(𝐶𝑢)                  (3) 

𝐺𝑖𝑛𝑖(𝐶, 𝑏) = ∑
|𝐶𝑢|

𝐶
𝑈
𝑢=1 𝐺𝑖𝑛𝑖(𝐶𝑢)       (4) 

Where 𝐶𝑣 signifies that examinations in the 𝐶 with a frequency of 𝑢 on a characteristic are 

contained in the 𝑏𝑢 segment node  

𝐸𝑛𝑡(𝐶) = − ∑ 𝑜𝑙𝑙𝑜𝑔2𝑜𝑙
|𝑧|
𝑙=1         (5) 

𝐺𝑖𝑛𝑖(𝐶) = ∑ ∑ 𝑜𝑙𝑜𝑙′ = 1 − ∑ 𝑜𝑙2|𝑧|
𝑙=1

 
𝑙′≠𝑙

|𝑧|
𝑙=1       (6) 

The combined node separating calculation and responsive component selection procedure 

appear such that because the method of node separating is to desire for the enhanced purity of 

the data set between separation. 
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𝐺 = min
∝,𝛽∈𝑄

𝐸{𝐶, 𝑏} = 𝛼𝐺𝑖𝑛𝑖(𝐶, 𝑏) − 𝛽𝐺𝑎𝑖𝑛(𝐶, 𝑏) {
∝ +𝛽 = 1

0 ≤ 𝛼, 𝛽 ≤ 1
   (7) 

∝, 𝛽 are indicating the attribute-splitting weighted component. 𝐺 Has insignificant importance. 

To obtain the most effective settings for the combination, an adaptive procedure for parameter 

evaluation is employed. 

The experiment evaluates the performance based on the classification error rate and the 

consistency frequency. Sample 𝐶 rate of misclassification is calculated using Equation (8). 

𝐹(𝑒; 𝐶) =
1

𝑛
∑ ΙΙ(𝑒(𝑤𝑗) ≠ 𝑧𝑗)𝑛

𝑗=1        (8) 

The frequency of efficiency is calculated using Equation (9). 

𝑎𝑐𝑐(𝑒; 𝐶)
1

𝑛
∑ ΙΙ𝑛

𝑖=1 (𝑒(𝑤𝑗) = 𝑧𝑗) = 1 − 𝐹(𝑒; 𝐶)     (9) 

3.2.3 Boosted Grey Wolf Optimized Adaptive Random Forest (BGWO-ARF) 

To anticipate water levels in hydroelectric reservoirs, an innovative combination of the 

boosted Grey Wolf Optimization (BGWO) method with an enhanced adaptive Random Forest 

(ARF) model is developed. Integrating the exceptional by exploring and exploiting 

characteristics of BGWO with the substantial estimation capacity of RF, this particular 

technique promises to overcome the constraints of standard techniques and present more exact 

and dependable predictions of water levels. To explore the response of environment and 

determine the optimum parameters for the RF model, the BGWO provides sophisticated 

exploration qualities motivated by the pursuing technique of grey wolves. Further, by utilizing 

cutting-edge feature selection approaches and fine-tuned hyper parameter improvement, the 

adaptive RF algorithm improves the model's predictive efficiency, enabling it to recognize 

intricate connections in complicated hydrological information. By combining the 

characteristics of BGWO and RF, such combination architecture is anticipated to improve 

beyond prior approaches for predicting water levels in hydroelectric reservoirs. Algorithm 1 

shows the pseudocode for (BGWO-ARF). 

Algorithm 1: Boosted Grey Wolf Optimized Adaptive Random Forest (BGWO-ARF) 

𝑖𝑚𝑝𝑜𝑟𝑡 𝑛𝑢𝑚𝑝𝑦 𝑎𝑠 𝑛𝑝  

𝑖𝑚𝑝𝑜𝑟𝑡 𝑝𝑎𝑛𝑑𝑎𝑠 𝑎𝑠 𝑝𝑑  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟  

𝑓𝑟𝑜𝑚 𝑔𝑟𝑒𝑦𝑤𝑜𝑙𝑓𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑖𝑚𝑝𝑜𝑟𝑡 𝐺𝑟𝑒𝑦𝑊𝑜𝑙𝑓𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑜𝑑𝑒𝑙_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟  

𝑑𝑎𝑡𝑎 =  𝑝𝑑. 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣(′ℎ𝑦𝑑𝑟𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐_𝑑𝑎𝑡𝑎. 𝑐𝑠𝑣′)  

𝑑𝑒𝑓 𝑔𝑤_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛):  
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𝑑𝑒𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠):  

𝑚𝑜𝑑𝑒𝑙 =  𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟(𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠
= 𝑖𝑛𝑡(ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[0]), 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ

= 𝑖𝑛𝑡(ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[1]), 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡
= 𝑖𝑛𝑡(ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[2]), 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓
= 𝑖𝑛𝑡(ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[3]), 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42) 

𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛)  

        𝑦_𝑝𝑟𝑒𝑑 =  𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡)  

𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑)  

𝑔𝑤𝑜 
=  𝐺𝑟𝑒𝑦𝑊𝑜𝑙𝑓𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, {′𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠′: (50, 200), ′𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ′: (10, 50), ′𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡′: (2, 20), ′𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓′: (1, 10)}, 10, 50) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑔𝑤𝑜. 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒() 

𝑏𝑒𝑠𝑡_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =  𝑔𝑤_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

𝑎𝑑𝑎_𝑟𝑓 = 𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟(𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟(𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =
𝑖𝑛𝑡(𝑏𝑒𝑠𝑡_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[′𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠′]), 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ =
𝑖𝑛𝑡(𝑏𝑒𝑠𝑡_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[′𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ′]), 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 =
𝑖𝑛𝑡(𝑏𝑒𝑠𝑡_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[′𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡′]), 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 =
𝑖𝑛𝑡(𝑏𝑒𝑠𝑡_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[′𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓′]), 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 =
42), 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 50, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42) 

𝑎𝑑𝑎_𝑟𝑓. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

𝑦_𝑝𝑟𝑒𝑑 =  𝑎𝑑𝑎_𝑟𝑓. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡)  

𝑚𝑠𝑒 =  𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑)  

𝑝𝑟𝑖𝑛𝑡(𝑓"𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟: {𝑚𝑠𝑒}")  

 

4. Result and discussion 

The proposed approach has been implemented employing the Python 3.11 platform, Tensor 

Flow version 1.14.0 and Anaconda version 2019.07. The laptop is equipped with the OS-10, 

with a Ryzen 5 processor and 6 GB of RAM. The performance of the proposed method is 

analyzed in terms of various parameters, including RMSE, MAE and RAE to assess the 

effectiveness of the proposed technique in comparison to existing approaches. We employ 

parameters like “Support Vector Machine (SVM) [19], “Multi-layer Perceptron” (MLP), 

“Gaussian Process Regression” (GPR) [19], Neural Network (NN) [20] and Decision Forest 

Regression (DFR) [20]. 

Figure 2 illustrates the BGWO-IRF estimate and the particular frequency for each experiment 

sample. Considering the regularity of the dataset examples over time, it is apparent that the 

data structure in this circumstance is flatter. The improved findings in both error measures 

analyzed and suggest that the structural consistency in the dataset has enabled the algorithm 
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to produce a superior forecast. The BGWO-IRF outcome resembles the actual environment 

data, with a few instances demonstrating unexpected abnormalities due to dramatic 

fluctuations. Remember that this fundamental element of the dataset has been compensated 

for the BGWO-IRF. 

 

Figure 2: BGWO-IRF vs. Ground truth [Source: Author] 

Root Mean Square Error (RMSE) evaluates the intensity of the prediction assumed by 

determining the square root of the mean squared deviations between forecasted and measured 

water levels. It calculates prediction errors. RMSE comparison is displayed in Figure 3 and 

Table 3. In comparison, the performance of the existing technique, SVM, MLP and GPR, was 

22.56, 23.42 and 24.42, while our suggested solution BGWO-ARF had 20.60. The outcomes 

demonstrate that our suggested approach has a lower RMSE in comparison with the existing 

methods. 
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Figure 3: Output of RMSE 

Table 3: Comparison of RMSE 
Methods RMSE 

SVM 22.56 

MLP 23.42 

GPR 24.43 

BGWO-IRF [Proposed] 20.6 

Mean Absolute Error (MAE) enables a simplistic evaluation of forecast performance by 

determining the averaged percentage variances between anticipated and observed water levels 

in hydroelectric reservoirs. Figure 4 and Table 4 show the MAE comparison and the 

performance of the existing technique, SVM, MLP, GPR and NN, was 16.46, 17.38 and 19.28, 

while our proposed method BGWO-ARF had 14.20. The results show that, comparing to the 

existing approach, our proposed technique has a lower MAE. 
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Figure 4: Output of MAE 

Table 4: Comparison of MAE 
Methods MAE 

SVM 16.46 

MLP 17.38 

GPR 19.28 

BGWO-IRF [Proposed] 14.2 

Reservoir Area Estimation (RAE) technique hydropower reservoir water levels are evaluated 

and reservoir surface areas are calculated, which are essential for efficient substance 

administration, flood management, hydropower scheduling and ultimately, for maintaining a 

healthy ecological as well as industrial balance. Figure 5 and Table 5 show the RAE 

comparison. The performance of the existing technique NN and DPR was 0.168 and 0.251, 

while our proposed method BGWO-AARF had 0.098. The results demonstrate that our 

proposed strategy reduces the MAE when compared to the existing methodology. 
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Figure 5: Output of RAE 

Table 5: Comparison of RAE 

Methods RAE 

NNR 0.168 

DFR 0.251 

BGWO-IRF [Proposed] 0.098 

 

5. Conclusion 

Hydroelectric power production is essential for satisfying the global requirement for 

environmental energy, effective water management and dependable electrical transmission 

dependent on the efficient management of hydroelectric reservoirs. This research proposes the 

Boosted Grey Wolf Optimized Adaptive Random Forest (BGWO-ARF) model that integrates 

the enhancement features of the GWO technique with the responsive characteristics of the RF 

algorithm to produce accurate water level forecasts. The BGWO-ARF model demonstrates the 

complicated processes of water level variations by incorporating a wide range of hydrological 

parameters, atmospheric circumstances and historical reservoir measurements. The approach's 

RMSE (20.60), MAE (14.20) and RAE (0.098) on India's hydroelectric reservoir collection 

demonstrate that it achieves better forecasting efficiency compared to existing methodologies. 

The findings indicate a substantial improvement in forecasting precision and performance, 

presenting decision-makers with the information they require to make educated selections 

about reservoir management and execution. This investigation improves the area of hydrology 

by contributing to the development of more effective forecasting systems for the management 

of water resources in the environment of hydroelectricity generation. In order to predict the 

level of water in hydroelectric reservoirs, standard techniques employ simplistic assumptions 
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that cannot represent the intricate interaction of elements impacting water levels. These 

techniques can have difficulty integrating several categories of information, especially 

hydrological characteristics and historical reservoir statistics. Furthermore, investigating the 

feasibility of combining different measurement techniques and utilizing prediction intelligence 

for improved reservoir management maintains the possibility for future advancements. 
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