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Single-lens cameras are popular but lack depth perception. Augmented reality, autonomous 

navigation and 3D reconstruction are limited by scene depth information. For autonomous 

navigation and object recognition, single-lens camera depth perception can be improved. Single-

lens camera systems need to improve their depth assessment to be feasible. This study tackles this 

limitation by combining barrier detection with AI techniques to improve depth perception in single-

lens cameras. Better depth perception is the goal of jpg image dataset, a standard for autonomous 

driving. In preparation, the dataset is rotated, flipped and scaled to improve training. The Single 

Shot Detector (SSD) has a barrier detection module that detects and evaluates scene depth cues. 

The Enriched Recurrent Neural Network (ERNN) improves depth perception. ERNN uses temporal 

relationships in sequential data to improve scene comprehension and depth estimate. The suggested 

method is compared to current methods using Error and Accuracy Parameters. Our experiments 

show that single-lens cameras can perceive depth better than earlier methods. This study shows 

how to overcome current limits and improve depth perception in single-lens cameras. SSD barrier 

detection and ERNN depth perception speed things up. Single-lens cameras will get more accurate 

depth estimates in real life with this strategy.  
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1. Introduction 

Depth prediction is challenging for artificial intelligence (AI), which impacts visual 

perception. Although synchronization and picture generation are complicated, dedicated 

hardware, multi-view geometry and machine learning (ML) approaches are employed. 

Accurate depth estimation is essential for visual perception and poorly limited picture 

generation might produce inaccurate outcomes [1]. Depth retrieval is necessary for 

distinguishing individuals in observation. This can be achieved by capturing several pictures 

from various angles using many cameras. The main challenge is dealing with conventional 

photography that captures two-dimensional projections of 3D scenes [2]. The emerging field 

of AI uses segmentation and object identification to help persons with psychological and 

physical problems. This gadget helps vision-impaired people overcome perilous outdoor 

obstacles. AI can help them by broadening their senses and delivering precise descriptions [3]. 

The capacity to distinguish between short depth intervals using stereo acuity has been 

demonstrated to be sensitive to blur caused by monocular vision. Numerous studies indicate 

lower stereo acuity with mono-vision correction in presbyopes, consistent with this sensitivity 

[4]. Visual perception, graphics, recognition and robotics depend on depth estimation in AI. 

However, dedicated hardware, multi-view geometry and ML are expensive and power-hungry 

are limited to specialized situations [5]. Developing bezel-less smart phones requires mass 

manufacture of camera lens modules before assembly. A camera lens module typically found 

smart phones consists of stacked spherical and aspheric lenses in a customized barrel [6]. Fast 

photographic cameras enable periodic field screening of huge field plots, breeder individuals 

and genomic vaults. A phenomenotypic record that is accurate, unbiased and comparative can 

be produced with little to no human intervention through effective data automation 

manufacturing. Disposable sensors, for example, are quick, easy to use and deliver 

convenience and a benefit-cost. [7]. Interest in fisheye cameras has increased due to their wide 

field of view, enabling applications like augmented or virtual reality (AR/VR) content and 

robot vision. They need improvement due to geometric distortions and object appearance 

changes [8]. 

 

2. Literature Review 

According to the author of, [9] improved real-time object identification in industrial 

automation, construction, healthcare and autonomous cars with You Only Look Once (YOLO) 

and Faster Region Convolutional Neural Network (Faster R-CNN) algorithms despite data 

privacy and computational complexity. Study [10] analyzed deep learning (DL) systems to 

discriminate malignant and benign tumors in various visual modalities. These technologies are 

in early clinical trials despite claims of improved accuracy. This review covers digital image-

based AI advances and problems. The proposed a glasses-free 3D auto-stereoscopic display 

system that uses an eye monitoring technique for presenting computed tomography (CT) [11] 
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cardiac images. The system employs various machine-learning approaches to generate pictures 

of excellent quality with minimum crosstalk while making use of an illumination unit and slit 

barrier. To developed Double Star, a long-range assault that worked on commercialized stereo 

imaging devices and validated on actual devices [12]. Double star injected artificial obstacle 

depth employing pure light from two sources in autonomous machines. 

The study examine a house-wide fall alert system that distinguishes between real crashes and 

routine activities using machine learning and an inexpensive single-board computer [13]. 

Every fall in high-risk areas guarantees security in assisted living facilities, rehabilitation 

institutes and elderly communities. The study analyzes the crucial visual component of near-

eye displays that lower computational load and lessen visual discomfort, including foveation 

and defocus [14]. There is a need for more research to be done on the association between 

lower discrimination thresholds and visual eccentricity, as evidenced by two psychophysical 

tests. To employ the technological operation of radar detectors, Light Detection and Ranging 

(LiDAR) [15] along with vision cameras in self-driving cars are examined in this study with 

an emphasis on their usefulness and possibilities. It looks at multi-sensor fusion methods and 

freely available calibrated tools for self-driving automobile devices' identifying objects. 

Author [16] autonomous driving relies on detection for path planning, motion prediction and 

collision avoidance. Challenges include semantic alignments, representation training and 

perception repair. The survey covers detectors, performance indicators and techniques. Studies 

[17] present a procedure for automatic recognizing collisions that focuses on obstacle lengths 

from single-camera images or movies. Even while cameras are used for collision detection, 

existing techniques must be safer for automated driving. 

Research gap is need for the ability of current single-lens camera systems to reliably assess 

depth and restricts their usefulness in practical situations. This study overcomes this restriction 

by presenting a unique strategy for improving depth perception in single-lens cameras by 

combining barrier detection with artificial intelligence (AI) algorithms. 

Significant of the study is single-lens cameras with barrier detection and AI increase depth 

perception, focusing, portrait mode, 3D scene reconstruction, AR, object recognition and real-

time depth mapping. Improvements boost autofocus, portrait mode and 3D scene 

reconstruction. Tracking and segmenting objects improves low-light performance and 

dynamic scene interpretation. These developments produce better imaging. 

Objective of the study is optimizing the depth vision in single-Lens cameras involves a 

framework using AI-based Barrier Detector-Depth Perception (BD-DP) architecture. The 

Single Shot Detector (SSD) is used for barrier detection, while Enriched Recurrent Neural 

Networks (ERNN) is used for depth perception. This approach improves barrier distance 

estimation accuracy and efficiency, enhancing the performance of single-lens cameras.  

The following are the next section of the study; Section 2: Study Methods, Section 3: Result 

and Discussion and Section 4: Conclusion is discussed. 

 

3. Method 

A single-lens camera using SSD for boundary detection and ERNN for depth perception 

combines the strengths of both architectures. A more detailed system flow follows (Figure 1). 
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The SSD and ERNN are used in BD-DP in a single-lens camera to combine information from 

both tasks. This fusion technique involves combining features from both modules, training a 

classifier and evaluating the performance on diverse datasets. Regular testing along with 

validation ensures the robustness and generalization of the fused model in various scenarios. 

 

Figure 1: Work flow Model [Source: Author] 
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3.1 Image Acquisition 

The research and training a single lens camera captured image and BD-DP algorithms dataset 

consisting of RGB photos (280 x 960 pixels) charged with a single lens camera, stored in JPG 

format and includes object class, bounding box coordinates, camera angle and object distance 

as in figure 2.  

 

Figure 2: Input Image Capture by Single Lens Camera (source: 

https://vancouverpublicspace.ca/dev/wordpress/wp-content/uploads/2017/03/Sergio-Ruiz-

Flickr-Mint-Plaza-406x272.jpg ) 

3.2 Data Preprocessing 

The dataset was preprocessed by replacing bounding box coordinates with object detector 

positions using the suggested framework. Normalize the captured images to ensure 

consistency and resize the pictures if necessary. Model performance was compared using the 

original and identified bounding boxes. Resize images to a standard size. Normalize pixel 

values. Augment data to increase the diversity of the dataset.  

• Rotation,  

• Flipping,  

• Scaling. 

The intersection over the union function found a border percentage integrating. Learning, 

verification and evaluation datasets were randomly selected from the 26,927-object modified 

dataset. 

3.3 Barrier Detection  Using Single Shot Detector  

The dataset trains a Single Shot Detector (SSD) model for barrier detection, which is adjusted 

for specific barrier types, bounding boxes and class scores are extracted for each object. SSD 

is Convolution Neural Network (CNN) architecture for object localization, generating feature 

maps at different scales. It predicts object class scores and bounding box offsets using multiple 

convolutional layers. SSD performs feature fusion across various scales to improve detection 

accuracy. The model is trained using a composite loss function, combining localization and 

confidence loss. It is trained on a dataset with annotated bounding boxes and class labels. SSD 

is suitable for real-time object detection in applications like autonomous vehicles, surveillance, 

https://vancouverpublicspace.ca/dev/wordpress/wp-content/uploads/2017/03/Sergio-Ruiz-Flickr-Mint-Plaza-406x272.jpg
https://vancouverpublicspace.ca/dev/wordpress/wp-content/uploads/2017/03/Sergio-Ruiz-Flickr-Mint-Plaza-406x272.jpg
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robotics, ensuring efficient and effective object detection. Convolutional networks for feature 

extraction, such as VGG, ResNet, Inception, Inception Resnet-v2 and MobileNets, are the 

main subjects in the study. 

To detect more minor things, the first layer creates a large-scale feature map; to catch more 

prominent objects, the second layer creates multi-scale feature maps (See Figure 3). Using a 

tiny kernel, the final convolutional layers forecast bounding box positions and confidences for 

several categories. To generate 8952 boxes per class, the SSD network consists of the 

MobileNets basic model, additional feature layers and classifier convolutional layers. The 

dimensions of the input photos are 300 by 300 (SSD300). MobileNets is used instead of VGG-

16 or RESNET to increase accuracy and detection speed. Mobile networks are perfect for real-

time object detection because they use less computational resources and shorter processing 

time. They are smaller and less computationally demanding. Each item needs an input image 

and ground truth boxes to train it. Several dimension feature maps examine a limited collection 

of standard shapes with varying perspective percentages. For each object category, including 

wildflowers and cats, these boxes forecast shape variances and their trust. These default boxes 

are first matched to the ground truth boxes during training; the huge barrier box for 8 x 8 scales 

and the tiny barrier box for 4 × 4 scales are considered positives and the remaining packages 

are considered negatives. Localization loss and confidence loss are combined to form the 

weighted model loss. SSD generates several feature maps that align with objects and provide 

the thing's name. Localization and classification loss comprise the loss function used to assess 

the SSD model. 

 

Figure 3: SSD Frame Work [Source: Author] 

The loss can be calculated in this way in Equation (1). 

ℒ =
1

M
 (Lcon e + Lloc)                 (1) 

Here, Lloc stands for localization loss,   Lconf for confidence loss and M for the number of 

positive matches in Equation (2). 

ℒloc(w, l, h) = ∑ ∑ wj.i
l

nϵdw,dz,x,g
M
jϵ Pos smoothK1(kj

n − hi
n)            (2) 

hi
dw = (hi

dw − cj
dw)/cj

xhi
dz = (hi

dz − cj
dz)/cj

z                                                        (3) 
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hi
x = log 

hi
x

ci
x                                                                                                              (4) 

hi
g

= log 
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g
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Between the ‘Predicted-Box’ (k) and the ‘Ground-Truth-Box’ (h) parameters, the localization 

loss is a smoothKloss.  The Default-Bounding-Boxes (w) middle, dimension (x) and length 

(g) are (dw, wz) the softmax loss over several classes, or confidence (c), represents the 

confidence loss and it is displayed as follows in Equation (6): 

ℒloc(w, z) = − ∑ wji
oM

jϵPos log(cj
o) − ∑ logM

jϵNeg (cj
o)(cj

o)                            (6) 

Here  cj
o =

exp cj
o

∑ exp cj
o

o
.                 

3.4 Enriched Recurrent Neural Network (ERNN) -Based Depth Perception 

Develop a depth perception module to determine the depth of the barriers that have been 

identified, with the help of an ERNN. Provide depth charts or values related to the obstacles 

that were found. Artificial intelligence (AI) has advanced due to recent developments in deep 

learning, making it feasible to obtain fundamental characteristics from raw sensory 

information. Gated Recurrent Unit (GRU) cells are a crucial choice for recurrent neural 

networks (RNNs) in tasks involving BD-DP in a single-lens camera. These cells are designed 

to work with sequential data, making them suitable for time-series information studies. The 

goal is to produce accurate class predictions based on the temporal sequence of time-of-flight 

measurements, understanding patterns and relationships. Figure 4 tells the depth map for the 

input image. GRU cells can retain long-term material information through internal gates and 

optimizable parameters. These gates control the flow of information and allow the model to 

better capture patterns as well as dependencies in the time-of-flight measurements. 

 

Figure 4: Estimated Depth Map [Source: Author] 

3.4.1 Gated-Recurrent Unit 

We present GRUs following the depth perception in an object. Set z ∈ D be the ground truth 

class label and let w = (w1, … . , ws, … , wS), ws ϵ ℝmbe an ordered collection of S events. A 

GRU cell gets ws at each successive cycle and produces a stimulus gsϵ ℝnanswer in Equation 



967 Rakesh Kumar Yadav et al. Enhancing Depth Perception in....                                                                                                            
 

Nanotechnology Perceptions Vol. 20 No. S3 (2024) 

(7). 

gs
i = (1 − ys

i )gs−1
i + ys

i gs
i                                                                          (7) 

Through merging a potential stimulation via the present period ǵs
i  with inspiration via the 

preceding time gs−1 
i . The modification gate or trade-off factor ys

i , is computed as in Equation 

(8), 

ys
i =  σ(Xyws + Vygs−1)i                                                                                 (8) 

Where, σ is an exponential function that produces values in the interval (0, 1) and xy ∈

 ℝn×m and Vy ϵ ℝn×m is optimizable parameters identical throughout each s.  It computes the 

potential deactivation in Equation (9). 

ǵs
i = tanh (Xws + V(ws ⨀ gs−1)i                                                                                      (9) 

Where ws frequently implied to as the initialization gate and ⨀ are the element-wise products 

of the two vectors. Keep in mind that X ∈  ℝn×mand  V ∈  ℝn×m is distinct parameter sets 

from Equation (10) Xy and Vy. 

The gate that is reset is comparable to the updated gate ws. 

qs
i =  σ(Xqws + Vqgs−1)i                                                                                                    (10) 

The final phase injects the last bit of GRU stimulation at time S into a dense layer with an 

activation function similar to soft-max in Equation (11-12). 

The logarithm for yjis calculated from the dense layer using, 

yj = ∑ xt
ji

i gS
i ,                                                                                                                     (11)              

Where the soft-max layer weights are represented by xt = (xt
ji

), next, the sequence of 

segmentation labeling can be acquired by implementing the function for softmax activation. 

ýj =
fyj

∑ fyj
j

                                                                                                                           (12)    

Moreover, stacking GRU layers can create a more profound GRU architecture. The sequence 

of observations x is sent into the first GRU layer and the activation outputs of each succeeding 

layer are fed into them. At last, we transmit the stimulation of the highest stacking layer to the 

soft-max dense layer. The framework is shown in Figure 5. Circles represent the concatenation 

procedure. Grey rectangles represent bidirectional GRU layers and arrays represent 

information flow. 
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Figure 5: Fundamental Structure of GRU layer 

[Source: https://www.mdpi.com/1099-4300/21/4/414/pdf] 

3.5 Integrating  of SSD and ERNN 

Utilizing a multi-model fusion technique entails the identification of barriers in the input frame 

by an object detection module such as SSD and estimating the depth of the discovered walls 

by a depth perception module such as ERNN GRU-based Depth Estimation. The fusion 

technique combines features from both modules at a higher level to produce a fused feature 

representation.  

 

4. Result and Discussion  

The model was implemented using PyTorch 1.9.1 on specialized hardware like a Field-

Programmable Gate Array (FPGA) for BD-DP on computers or phones. The study evaluated 

various size barrier prediction models; with ERNN performing better in error metric (see Table 

1 and Figure 6) and accuracy metric (see Table 2 and Figure 7). The SSD model was 

implemented for barrier detection in distance prediction frameworks for mini or massive-scale 

objects. ERNN achieved depth perception for single-lens cameras.  

4.1 Evaluation matrix  

To assess how well the barrier-detecting models performed using the data set is tested, this 

experiment used the Mean-Absolute-Error (MAE). Equation (13) establishes the MAE for the 

anticipated barrier distance, 

MAE =
1

M
∑ |cj −  ćj|

M
j=1                                                                               (13) 

Where, ćj is the anticipated barrier distance, cj is the actual barrier distance and M is the total 

number of items as shown in Equation (14-18). This study employed an additional five 
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variables to compare the performance of the suggested structure with different approaches. 

The five metrics were the following: threshold accuracy (Threshold), root mean squared error 

(RMSE), squared relative difference (SquaRel), relative absolute mistake (AbsRel) and RMSE 

log. 

Abs Rel =
1

M
∑

|cj− ćj|

dj

M
j=1                                                                           (14) 

SqualRel =
1

M
∑

||cj− ćj||

dj

M
j=1

2

                                                                      (15) 

RMSE = √ 1

M
∑ |cj − ćj|

M
j=1

2
                                                                    (16) 

RMSE log = √ 1

M
∑ |log cj − logćj|

M
j=1

2
                                                   (17) 

Threshold = % of cj s. t. max (
ćj

cj
,

ćj

cj
) = δ < threshold                   (18) 

The three values that the threshold value requires are “δ < 1.25, δ < 1.252 and δ < 1.253”. It 

calculates the merged image's contrast. A high standard deviation (δ) would accompany a 

highly colorful visual and obtain higher accuracy. 

Table 1: Outcomes of Error and Accuracy Matrix for SSD-ERNN in a Single Lens Camera 

Method 
Error Measurement 

AbsRel SqRel RMSE RMSElog 

XGboost-LSTM [18] 0.184 1.596 4.873 0.276 

Encoder-Decoder Architecture[19] 0.048 0.146 2.097 0.278 

YOLO-Faster R-CNN [20] 0.487 0.463 6.809 0.570 

SSD-ERNN (Proposed) 0.048 0.047 0.094 0.083 

 

Figure 6: Conclusions of the SSD-ERNN Error Matrix in a Single Lens Camera 
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Table 2: Outcomes of Accuracy Matrix for SSD-ERNN in a Single Lens Camera 

Method 
Accuracy (%) 

δ1 <1.25 δ2<1.252 δ3<1.253 

XGboost-LSTM [18] 0.84 0.902 0.703 

Encoder-Decoder Architecture[19] 0.89 0.92 0.847 

YOLO-Faster  R-CNN [20] 0.74 0.83 0.67 

SSD-ERNN (Proposed) 0.989 0.997 0.982 

 

Figure 7: Consequences of the Single Lens Camera SSD-ERNN Accuracy Matrix 

 

5. Discussion  

BD-DP is a crucial task in AI, but Extreme Gradient Boosting (XGBoost) [18], a popular ML 

algorithm, is limited to tabular data and it is feature engineering dependent that can need help 

with generalization to unseen data. XGBoost is expensive, unsuitable for image data and 

requires careful hyper parameter tuning. Sequential LSTM [18] networks could not capture 

spatial dependencies well, rendering them unfit for these purposes. LSTM is more complex, 

computationally expensive and time-consuming to train. Long-term dependencies, lighting 

conditions and data efficiency can challenge LSTMs. They escape the vanishing gradient issue 

since they are not built for depth perception. Encoder-decoder architectures are effective for 

barrier detection and depth perception. They suffer from loss of information during encoding, 

limited receptive field, scale variation issues, training data dependency, dynamic scenes, 

computational complexity, hyper parameter sensitivity and occlusions. Despite these 

limitations, architectural changes, attention mechanisms and advanced training procedures 

help construct encoder-decoder models [19]. Popular object identification method YOLO-

Faster R-CNN [20] detects barriers in single-lens cameras. Its shortcomings are its low 

localization accuracy, trouble recognizing small items, limited knowledge of object 

relationships, difficulty managing obstructed objects and difficulty seeing variable-sized 

things. Its performance depends on training data quality and diversity, yet its speed vs. 

accuracy trade-off could prove difficult. Faster R-CNN is utilized for depth perception and 



971 Rakesh Kumar Yadav et al. Enhancing Depth Perception in....                                                                                                            
 

Nanotechnology Perceptions Vol. 20 No. S3 (2024) 

barrier identification in single-lens cameras. Its drawbacks include computational complexity, 

slowness, training time, hyper parameter sensitivity, limited generalization to unforeseen 

circumstances, single-lens camera restrictions, occlusion handling problems and colossal 

model size. Computer vision research can improve these limits and applicability for specific 

applications [20]. 

 

6. Conclusion  

The suggested model calculates the separations across large and small objects. The proposed 

framework's object detector finds the objects' bounding boxes and classes. The suggested 

framework's depth estimator calculates the acquired image's depth map. The Depth-Map is 

integrated in the bounding bundles to obtain depth-sensitive attributes for every item. Based on 

the object's depth characteristics and bounding box, the ERNN methodology is applied to 

estimate the depth perception between the small and big things. The accuracy of the suggested 

framework for calculating depth perception ranged from 98.9 to 99.7% depending on the 

barrier distance level and object size. 
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