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Maintaining the effective and dependable functioning of manufacturing processes necessitates the 

precise recognition of two-phase flow in pipes. However, current classification techniques fail to 

achieve high accuracy due to the unpredictable and complex nature of flow. The intricate patterns 

and variances in flow's dynamics could be complex for conventional approaches to capture, 

resulting in inadequate achievement of classification. Therefore, it is imperative to create cutting-

edge strategy that can successfully handle these issues and raise the precise classification of the 

two-phase pipe flow. In this article, a jellyfish search-driven augmented Hopfield neural network 

(JS-AHNN) is presented to address this problem. The suggested approach optimizes the framework 

of neural networks by making use of the durability and versatility of bio-inspired techniques, which 

enhances the performance of algorithm. We show that the suggested JS-AHNN methodology is 

more effective than traditional techniques at achieving higher accurate classification through 

comprehensive trials on acquired data samples. The experimental findings demonstrate the JS-

AHNN superior performance compared to existing methods in terms of accuracy (95.3%), recall 

(96%), precision (95.6%), and f1 score (95.8%). The findings show that combination of neural 

networks and bio-inspired optimization improves the two-phase pipe flow classification efficiency, 
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which advances dependable and effective industrial operations. 

 

Keywords: Two-Phase Pipe Flow, Industrial Systems, Unpredictable Nature, Jellyfish Search-

Driven Augmented Hopfield Neural Network (JS-AHNN).  

 

 

1. Introduction 

The two-phase pipe flow is a fascinating field that explores the complex interactions between 

two different fluid phases inside conduits in the complex field of fluid dynamics. When liquid 

and gas phases exist simultaneously, it is known as the two-phase flow phenomenon, and it 

offers both engineers and researchers a variety of opportunities and challenges. Fluid dynamics 

are seen in thermal management systems, oil and gas transportation, other manufacturing, 

environmental, and technological applications. Understand and categorize two-phase pipe 

flow to maximize system efficiency and ensure process safety and effectiveness [1, 2]. Two-

phase pipe flow classification is the grouping patterns of flow, which has unique characteristics 

and contributing factors. The flow patterns, which depict the spatial and temporal distribution 

of both gases and liquids, offer an extensive comprehension of the fluid's dynamics in the pipe. 

Precise classification is important because it can provide insight into the underlying physics 

governing the flow, assisting in system analysis, design, and management [3, 4]. The inherent 

complexity caused by a variety of elements affecting the behavior of fluids is one of the main 

challenges in the classification of two-phase flows. Variables like fluid characteristics, flow 

rates, pipe geometry, and ambient conditions influence the wide range of observed flow 

patterns. To create an accurate and flexible classification system, professionals and experts 

need help to sort through the complexity [5, 6]. Technology increases the need for accurate 

and effective classification methods. Engineers and scientists operate to create robust models 

and tools that can detect two-phase pipe flow under different conditions. These classification 

systems help understand fluid behavior and develop specific solutions [7, 8]. Two-phase flow 

classification affects energy consumption, sustainability, and safety beyond technical details. 

Enhancing energy-intensive procedures by classifying and predicting flow patterns reduces 

operational costs and environmental impact. A comprehensive understanding of flow patterns 

improves safety protocols, ensuring systems can withstand and mitigate two-phase flow 

dynamics hazards [9, 10]. Phase dynamics and complex interactions lead to limited accuracy 

in forecasting the changes between flow patterns in two-phase pipe flow. The goal of this study 

is to improve the two-phase pipe flow classification accuracy using an innovative method that 

makes use of a novel bio-inspired optimization-driven neural network. This novel approach 

seeks to enhance the accuracy and consistency of classifying intricate fluid dynamics inside 

conduits by utilizing the effectiveness of biological principles. 

 

2. Related works 

According to the author of, [11] examined the two-phase flow pattern recognition and void 

fraction measurements separate the oil pipelines' scaling thickness of layer. Using an 

evaluation approach, they provided information about flow patterns and void fractions 
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independent of layer thickness. The findings offered important details for two-phase flow 

system optimization. In [12] identified high-pressure two-phase flow regime transitions 

utilizing deep learning and image processing. They analyzed images using sophisticated 

techniques, identifying clear flow patterns. Their approach makes a significant contribution to 

the comprehension of complicated high-pressure two-phase systems by differentiating 

between flow regimes. Research [13] employed deep learning to predict the two-phase flow 

mechanisms fluids in upward-inclined pipes. The method forecasted intricate flow dynamics 

through the use of a neural network model. The findings demonstrated that deep learning can 

improve two-phase flow prediction in inclined pipes. A two-phase method for recognizing 

flow regimes utilising machine learning and liquid-phase velocity data was presented in the 

[14]. They aimed to categorize two-phase system flow regimes by using an innovative 

methodology. The technique displayed encouraging results in obtaining accurate flow regime 

identification, improving our comprehension of intricate fluid dynamics. 

Author [15] examined the use of machine learning to forecast two-phase flow patterns and 

offered creative methods to improve prediction accuracy. They provided essential insights for 

enhanced modeling and comprehension of two-phase flows by demonstrating the 

identification of patterns in complex flow scenarios using a variety of datasets and algorithms. 

The study [16] investigated the potential of artificial intelligence and time-domain feature 

extraction techniques for improving the efficiency of two-phase flow meters that used the 

gamma-ray absorption method. They focussed on these methods could be used to increase 

two-phase flow measurement accuracy and dependability, which could lead to significant 

developments in flow metering technology. Research [17] presented a unique method for 

classifying two-phase flow patterns using machine learning and void fraction time series. They 

investigated the dynamic behavior of void fractions to improve the precision of flow pattern 

identification. The outcomes highlighted the suggested method was effective in categorizing 

two-phase flow patterns. The model for steady-state multiphase pipe flow presented in the [18] 

used machine learning techniques on lab data. The developed model effectively predicts the 

behavior of multiphase flows, providing valuable insights for applications in the oil sector and 

other fields. Study [19] presented a lattice Boltzmann model based on phase fields that can be 

used to simulate liquid, gas, and solid flows. The model allowed for the efficient simulation 

and analysis of intricate interactions between gases, fluids, and solids in a variety of flow 

scenarios by incorporating a phase-field approach within the lattice Boltzmann framework. 

Research [20] focused on using ultrasonic phased array technology to identify two-phase flow 

regimes. They utilized an innovative method to describe flow patterns, offering significant 

contributions to the fields of instrumentation and flow measurement. By using ultrasonic 

phased array techniques, their research advances the comprehension of two-phase flow 

dynamics. 

The research elements could be categorized: The approaches are discussed in Section 2. The 

experiment's findings are presented in Section 3. The last section of this research, section 4, is 

the conclusion. 

 

 

 



                                                   Enhancing Classification Accuracy in… Anupam Kumari et al. 974  
 

Nanotechnology Perceptions Vol. 20 No. S4 (2024) 

3. Methodology 

3.1 Dataset  

A collection of flow pattern data [21] from experiments base [𝑃𝑇𝑀 + 12] was made up of the 

most significant investigations conducted in the field. Mainly for this investigation, this data 

set was selected from the available sets because it has a lot of information points (5676), a 

extensive range of angles of inversion(−90° 𝑡𝑜 90°), and 2 pipe sizes (𝐼𝐷 = 1/2 𝑖𝑛 𝑎𝑛𝑑 1/4 

in), as well as the variety of patterns flow seen at all pipe inversion angles. The study takes 

into consideration the following flow patterns such as stratified smooth (𝑆𝑆), stratified wavy 

(𝑆𝑊), intermittent (𝐼), bubble (𝐵), scattered bubble (𝐷𝐵), and annular (𝐴). Slug (𝑆𝐿) and 

Churn are taken into the intermittent flow pattern (CH) flow pattern in combination [𝑃𝑇𝑀 +
12]. For evaluating the algorithm's performance, three tests are suggested. Test 1 requires 

consideration of each recommended flow pattern. Test 2 stratifies the flow 𝑆𝑇 (𝑆𝑇 =  𝑆𝑆 +
 𝑆𝑊) by combining the𝑆𝑆 𝑎𝑛𝑑𝑆𝑊 data points. Test 3 integrate the distributed patterns flow 

(𝐷𝐵 +  𝐵) and the separated patterns flow(𝑆𝑇 +  𝐴).  

3.2 Jellyfish Search-Driven Augmented Hopfield Neural Network (JS-AHNN) 

Two-phase pipe flow can be effectively classified using the Jellyfish Search-Driven 

Augmented Hopfield Neural Network (JS-AHNN). This novel method combines AHNN with 

jellyfish search principles, showing improved flow phase discrimination accuracy. In complex 

pipe flow systems, the JS-AHNN model presents a promising approach for precise 

classification. 

3.2.1 Jellyfish Search Algorithm 

The Jellyfish search technique, which enhances parameters for accurate phase recognition and 

flow characterization, effectively classifies two-phase pipe flow. The Jellyfish Search 

Optimization (JSO) technique is a metaheuristic algorithm that derives its inspiration from the 

behavior of jellyfish. The following sequence of operations represents the method by which 

jellyfish search for food:   

❖ The behavior of the individual jellyfish within the swarm. 

❖ Water circulation is used as a driving force to produce the jellyfish bloom. 

❖ The movements of jellyfish in the sea can be found here. It utilizes a method known 

as JSO. Requires into consideration the following set of idealized principles. 

❖ The time control procedure is responsible for coordinating the transition between the 

two advanced motions. The movements of jellyfish, specifically the motions that take place 

within the swarm, follow the flow of the ocean. 

❖ Jellyfish are more likely to collect in places where there is a substantial quantity of 

food easily accessible. 

❖ The amount of food that can be found is determined by the location and the function 

that is associated with the aim. 
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3.2.2 Augmented Hopfield Neural Network (AHNN) 

The two-phase pipe flow method of classification is improved by the Augmented Hopfield 

Neural Network (AHNN) by adjusting weights to achieve better flow characterization and 

accurate phase identification. There are two types of neurons present in an augmented Hopfield 

network, discrete neurons and continuous neurons. Both types of neurons are present in the 

network. The discrete neurons utilize the discrete transfer operation known as𝑔𝑐, which can 

be represented as in Equation (1-2): 

𝑣𝑑𝑖𝑗 = 𝑔𝑐(𝑣𝑑𝑗𝑖) = 1, 𝑖𝑓 𝑣𝑑𝑗𝑖 > 0       (1) 

𝑣𝑑𝑗𝑖 = 𝑔𝑐(𝑢𝑑𝑗𝑖) = 0, 𝑖𝑓 𝑢𝑑𝑗𝑖 < 0 (2) 

No change in 𝑣𝑑𝑗𝑖, 𝑖𝑓 𝑢𝑑𝑗𝑖 = 0       (3) 

Where both input and output will be considered discrete neurons, 𝑑𝑗𝑖 are denoted by the 

symbols 𝑢𝑑𝑗𝑖and𝑣𝑑𝑗𝑖, respectively. The Sigmoid transfer function 𝑔𝑐 is utilized by continuous 

neuron types. 

𝑣𝑐𝑗𝑖 = 𝑔𝑐(𝑣𝑐𝑗𝑖) =
1

2
+ (1 + tan 𝜆 𝑣𝑐𝑗𝑖))                                                                     (4) 

Where𝑢𝑖𝑗and 𝑣𝑐𝑖𝑗 represents input and output will be considered of the continuous neuron𝑐𝑗𝑖, 

respectively, and is a factor of scaling that is referred as the slope. Every neuron has called an 

input bias, simplified 𝐼𝑑𝑗𝑖 for discrete neuron 𝑑𝑗𝑖In addition to 𝐼𝑐𝑗𝑖, which stands for continuous 

neuron 𝑐𝑗𝑖. It is determined that the conventional connection matrix S is utilized, which 

provides all neurons with a connection, both continuous and discrete. As an illustration, 

𝑡𝑑𝑗𝑖→𝑐𝑚𝑛is the link that leads from the discrete neuron, denoted by the 𝑑𝑗𝑖, to the constant 

neuron, denoted by the 𝑐𝑚𝑛. Despite this, a recently discovered type of connection (in the 

form of a matrix W) between pairs of neurons. It illustrates the connection from neuron 

to 𝑤𝑗𝑖→𝑚𝑛 as follows: neuron pair 𝑐𝑘𝑚 𝑑𝑘𝑚 derived from pair𝑐𝑗𝑖𝑑𝑗𝑖. 

Equation (3) and Equation (4) define the dynamics of the augmented model. 

𝑑𝑈𝑐𝑗𝑖

𝑑𝑡
= ∑ 𝑆𝑐𝑚𝑛⇒𝑐𝑗𝑖𝑚,𝑛 𝑉𝑐𝑚𝑛 + ∑ 𝑆𝑑𝑚𝑛−𝑐𝑗𝑖𝑉𝑑𝑚𝑛𝑚,𝑛 + 𝐼𝑐𝑗𝑖 + ∑ 𝑊𝑚𝑛→𝑗𝑖𝑉𝑑𝑚𝑛𝑉𝑑𝑗𝑖𝑉𝑐𝑚𝑛𝑚,𝑛  (5) 

𝑈𝑑𝑗𝑖 = ∑ 𝑆𝑐𝑚𝑛→𝑑𝑗𝑖𝑣𝑐𝑚𝑛𝑚,𝑛 + ∑ 𝑇𝑑𝑚𝑛→𝑑𝑗𝑖𝑚,𝑛 𝑉𝑑𝑚𝑛 + 𝐼𝑑𝑗𝑖 + ∑ 𝑊𝑚,𝑛→𝑖𝑗𝑚,𝑛 𝑉𝑐𝑚𝑛𝑉𝑑𝑚𝑛𝑉𝑐𝑗𝑖 +
1

2
𝑇𝑑𝑗𝑖→𝑑𝑗𝑖Ψ +

1

2
𝑊𝑗𝑖→𝑗𝑖𝑉2

𝑐𝑗𝑖Ψ                                                                                         (6) 

WhereasΨ = −1. 𝑖𝑓 𝑉𝑑𝑗𝑖 = 1, and Ψ = 1.   𝑖𝑓 𝑉𝑑𝑗𝑖 = 0 

As illustrated, sequential updating of discrete neurons decreases the energy function Equation 

(5) due to system dynamics Equation (3) and Equation (4). First, analyze the change rate. 

Energy function affected by continuous neuron output𝑐𝑗𝑖 in Equations (7-9) 

𝑑𝐹

𝑑𝑠
= − ∑ 𝑆𝑑𝑚𝑛→𝑑𝑗𝑖 (𝑈𝑑𝑚𝑛

𝑐𝑈𝑑𝑗𝑖

𝑑𝑠
)

𝑙,𝑛
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− ∑ 𝑆𝑐𝑚𝑛→𝑑𝑗𝑖 (𝑈𝑐𝑚𝑛

𝑐𝑈𝑑𝑗𝑖

𝑑𝑠
) − 𝐽𝑑𝑗𝑖

𝑐𝑈𝑑𝑗𝑖

𝑑𝑠
𝑙,𝑛

 

− ∑ 𝑋𝑙𝑛→𝑗𝑖 (𝑈𝑐𝑗𝑖𝑈𝑐𝑚𝑛𝑈𝑑𝑚𝑛
𝑐𝑈𝑑𝑗𝑖

𝑑𝑠
)𝑙,𝑛                                                                    (7)  

𝑑𝐹

𝑑𝑠
= − (

𝑐𝑈𝑑𝑗𝑖

𝑑𝑠
) (∑ 𝑆𝑑𝑚𝑛→𝑑𝑗𝑖𝑈𝑑𝑚𝑛 + ∑ 𝑆𝑐𝑚𝑛→𝑑𝑗𝑖𝑈𝑐𝑚𝑛𝑚,𝑛 + 𝐽𝑑𝑗𝑖 +𝑙,𝑛

∑ 𝑋𝑚𝑛→𝑗𝑖𝑈𝑐𝑗𝑖𝑈𝑐𝑚𝑛𝑈𝑑𝑚𝑛𝑙,𝑛 )        

 (8) 

= − (
𝑑𝑓(𝑉𝑑𝑗𝑖)

𝑑𝑠
) (

𝑑𝑥(𝑉𝑑𝑗𝑖)

𝑑𝑠
)                                                                                             (9) 

The monotonic growing 𝑔𝑐makes this always nonpositive. Consider energy shift from discrete 

neuron 𝑑𝑗𝑖changing state at iteration n, as indicated in below in Equation (10-12). 

= − (
𝑑𝑔𝑐

𝑑𝑣𝑐𝑗𝑖
) (

𝑑𝑣𝑐𝑗𝑖

𝑑𝑡
)

2

                                                                                                                (10) 

Δ𝑈𝑐𝑗𝑖 = 0 ⟹ ΔF = 0                                                                                                            (11) 

If otherwise definedΨ 

ΔUcji = Ψ   if ΔUcji ≠ 0                                                                                                         (12) 

This number is always negative, according to logic similar to that Equation (2). Energy 

function Equation (5) cannot increase. This demonstrates that the system searches for the 

lowest possible energy functions Equation (5). Further establishes the validity of using genuine 

discrete neurons in the Hopfield system for augmented reality significant consequences for 

combined integer programming. The connected gradient network is similar to the upgraded 

Hopfield network that has been introduced. Neurals possessing Sigmoid nonlinearity in a 

connected gradient network symbolized discrete variables consisting of the reduced integrity 

constraints. The outputs of these continuous neurons were thresholder to produce distinct 

outcomes upon network convergence. Representing an augmented Hopfield discrete neurons 

and variables network was demonstrated above without having to give in to computational 

limitations compromising integrity. A accurate version is recommended to represent integer 

variables more effectively. 

The Jellyfish Search-Driven Augmented Hopfield Neural Network (JS-AHNN) is a new way 

to sort two-phase flow in pipe systems. This model uses both Hopfield neural networks and 

jellyfish search optimization to make the classification process more accurate. The JS-AHNN 

performs well with complicated dynamics and suggests an effective method to improve 

classification in situations with two-phase pipe flow. Algorithm 1 displays the Jellyfish 

Search-Driven Augmented Hopfield Neural Network (JS-AHNN) for two-phase flow in pipe 

systems. 

Algorithm 1: (JS-AHNN) 

classHopfieldNetwork: def _init__(self, num_neurons) : self. num_neurons = 

num_neurons 
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self. weights = initialize_weights () 

definitialize_weights (self): pass 

defupdate_neuron_state (self, input_pattern): pass 

defjellyfish_search (problem): pass 

classTwoPhasePipeFlowProblem: 

def __init__(self, parameters):  pass 

defevaluate_solution (self, solution):  pass 

defhybrid_algorithm (pipe_flow_problem, hopfield_network, num_iterations): 

for iteration in range (num_iterations): 

solution_candidate = jellyfish_search (pipe_flow_problem) 

energy_before = hopfield_network. evaluate_solution (solution_candidate) 

hopfield_network. update_neuron_state (solution_candidate) 

energy_after = hopfield_network.evaluate_solution (solution_candidate) 

ifenergy_after<energy_before: 

accept_solution (solution_candidate) 

 

4. Result and Discussions   

The process of classifying two-phase pipe flow using the hybrid Jellyfish Search-Driven 

Augmented Hopfield Neural Network (JS-AHNN) in Python involves developing the network 

architecture, integrating the Jellyfish search algorithm, and training on relevant data. For best 

results, uses a machine with a minimum of 16GB RAM, make sure it is compatible with 

Python 3.8, and use at least 8GB RAM. 

In a two-phase pipe flow classification model, accuracy is defined as the percentage of cases 

that are correctly classified. It is the proportion of phases that were accurately predicted in all 

instances. Loss, which is usually cross-entropy, measures how far the model deviates from the 

actual labels. Its goal is to reduce mistakes made during training to increase accuracy. High 

accuracy and low loss values point to a well-performing model that successfully separates the 

gas and liquid phases in two-phase pipe flow classification. Figure 1 shows the outcome of 

accuracy and loss. 
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Figure 1: Outcome of accuracy and loss (Source: Author) 

The efficiency of the suggested technique was compared with existing methods, such as 

extreme gradient boosting (XGBoost), random forests (RF), and multi-layer perceptron (MLP) 

[22]. The proposed and existing methods were assessed for accuracy, recall, precision, and f1 

score. 

Accuracy: Accuracy in the two-phase pipe flow classification is a metric used to evaluate a 

classification model's performance. The ratio of predicted instances to all of the dataset's 

instances is known as accuracy. The following Equation (13) can be used to determine the 

accuracy of a classification problem involving in two-phase flow. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
        (13) 

❖ TP is the quantity of actual positives: The positive occurrences that were predicted. 

❖ TN is denoted by the total amount of real negatives: The adverse events that were 

accurately forecast. 

❖ FP as the number of false positives: Positive cases that weren't predicted correctly. 

❖ FN is the number of false negatives: The number of negative cases that were 

inaccurately predicted. 

Figure 2 and Table 1 depict the accuracy values. Our suggested method, JS-AHNN, 

outperformed existing methods with an accuracy of 95.3%, greater than XGBoost (94.9%), 

MLP (93.5%), and RF (91.6%). The findings offer the significant advancements in 

classification in two-phase pipe flow achieved by JS-AHNN compared to existing methods.  
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Figure 2: Outcome of accuracy (Source: Author) 

Precision: Precision in two-phase pipe flow categorization measures the categorization 

model's efficiency. The proportion of actual positive forecasts to model positive forecasts is 

precision. It's crucial when utilizing unbalanced datasets, where one class (like one phase of a 

two-phase flow) is more prevalent. The following Equation (14) can be used to determine the 

precision of a classification problem involving in two-phase flow. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (14) 

Figure 3 and Table 1 depict the precision values. Our proposed approach, JS-AHNN, 

outperformed existing methods with aprecision of 95.6%, higher than XGBoost (93.2%), MLP 

(91.7%), and RF (90.2%). The results highlight the significant advancements in classification 

in two-phase pipe flow achieved by JS-AHNN compared to conventional methods. 

 

Figure 3: Outcome of precision (Source: Author) 
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Table 1: Performance evaluation of accuracy and precision (Source: Author) 
Methods Accuracy (%) Precision (%) 

XGboost 94.9 93.2 

MLP 93.5 91.7 

RF 91.6 90.2 

JS-AHNN [Proposed] 95.3 95.6 

Recall: Recall is a metric used to assess a classification model's performance in two-phase pipe 

flow classification. Recall measures explicitly a model's capacity to identify every pertinent 

instance of a given class accurately, it is also referred as sensitivity or true positive rate. Using 

the Equation (15), determine the recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (15) 

Figure 4 and Table 2 depict the recall values. Our proposed approach, JS-AHNN, 

outperformed existing methods with a recall of 96%, higher than XGBoost (95%), MLP 

(90%), and RF (91%). The results highlight the significant advancements in classification in 

two-phase pipe flow achieved by JS-AHNN compared to conventional methods. 

 

Figure 4: Outcome of recall (Source: Author) 

F1 score: The F1 score is calculated by taking the harmonic mean of the two variables: recall, 

which is the proportion of true positive predictions to all actual positives, and precision, which 

is the proportion of true positive predictions to all predicted positives. For an f1 score, use this 

Equation (16): 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2∗(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                (16) 

Figure 5 and Table 2 depict the f1 score values. Our proposed approach, JS-AHNN, 

outperformed existing methods with anf1 score of 95.8%, higher than XGBoost (94.2 %), 

MLP (91.2%), and RF (90.1%). The results highlight the significant advancements in 

classification in two-phase pipe flow achieved by JS-AHNN compared to conventional 

methods. 
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Figure 5: Outcome of f1 score (Source: Author) 

Table 2: Performance evaluation of recall and f1 score (Source: Author) 
Methods Recall (%) F1 score (%) 

XGboost 95 94.2 

MLP 90 91.2 

RF 91 90.1 

JS-AHNN [Proposed] 96 95.8 

 

5. Conclusion  

The accurate and effective operation of manufacturing processes depends on the precise 

identification of two-phase flow in pipes. The complexity and unpredictability of these flows 

provide difficulties for conventional categorization algorithms, which results in less than ideal 

accuracy. To overcome these difficulties, this paper suggests an innovative technique called 

the Jellyfish Search-driven Augmented Hopfield Neural Network (JS-AHNN). Through the 

utilization of bio-inspired methodologies, JS-AHNN enhances the neural network architecture, 

augmenting its robustness and adaptability. They demonstrate, using extensive experiments 

on collected data samples that JS-AHNN performs better than conventional methods, attaining 

more accuracy in the two-phase pipe flow classification. The experimental findings 

demonstrate the JS-AHNN superior performance compared to existing methods in terms of 

accuracy (95.3%), recall (96%), precision (95.6%), and f1 score (95.8%). The outcomes 

demonstrate that neural networks and bio-inspired optimization operate together, providing a 

viable approach to improve industrial processes' accuracy and dependability. The study's 

limitations include adapting and generalizability issues due to bio-inspired optimization 

understanding models. Different datasets and optimization strategies could be explored in 

future research to ensure robustness and applicability across two-phase pipe flow settings.  
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