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The growing focus on ecological balance has led to the exploration of alternative materials and 

recycling methods, such as blending recycled ABS with virgin ABS. This approach not only 

reduces plastic waste but also enhances the composite's mechanical properties and overall quality. 

Tensile strength is crucial for the performance and quality of the final product. The Taguchi method, 

a statistical technique for designing experiments, has been successfully applied to optimize injection 

molding processes. This study uses Taguchi and PCR-TOPSIS techniques to maximize the tensile 

strength of a mixture of recycled and virgin ABS and minimize shrinkage. The research findings 

indicated that the ideal parameters were achieved by combining a mixing proportion of 70:30, a 

mold temperature of 60°C, a melt temperature of 230°C, and a packing pressure of 150 Bar. Among 

the four criteria, the packing pressure is the most essential factor.  
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1. Introduction 

The world's increasing focus on preserving ecological equilibrium has spurred numerous 

industries to explore alternative materials and recycling methods [1], [2]. Acrylonitrile 

butadiene styrene (ABS), a thermoplastic polymer renowned for its versatility and durability, 

stands out as one material that has garnered significant acknowledgement [3]–[5]. By blending 

recycled ABS (r-ABS) with virgin ABS, we not only contribute towards tackling 

environmental concerns by decreasing plastic waste but also unlock the potential for enhancing 

the resulting composite's mechanical properties and overall quality. 

http://www.nano-ntp.com/
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The tensile strength of a material is a fundamental mechanical property that determines its 

ability to resist axial force without undergoing distortion. The tensile strength of the materials 

used in injection molding has a substantial impact on the performance and quality of the 

finished product. Reference [6] and [7]emphasize the importance of optimizing the processing 

parameters in order to achieve the required tensile strength. Reference [6] employs the Six 

Sigma methodology, whereas [7] adopts the Taguchi approach. Reference [8] and [9] 

conducted a study to investigate how various processing parameters affect the weld line tensile 

strength of injection molded items. The parameters encompassed variables such as melt and 

mold temperature, injection speed, and cross-sectional form. 

The shrinkage in injection molding is influenced by various factors, including material 

properties, processing conditions, and mold and product design. As stated in reference [10], 

microstructures have the ability to reduce shrinkage, especially when the packing pressures 

are kept at a low level. The significance of melt temperature is acknowledged by [11], who 

also identified holding pressure as a critical variable. [12] revealed the impact of processing 

variables, specifically packing pressure and melt temperature, on the shrinkage of thin-wall 

parts. Gas counter pressure and holding pressure are two techniques that can be employed to 

reduce shrinkage. This topic has been investigated by both [13] and [11]. [14] and [15] 

provided a summary of the factors that affect shrinkage, including material properties, 

processing conditions, and mold and specimen design. The study conducted by reference [16] 

assessed the influence of process factors on the occurrence of shrinkage and warpage. 

To achieve the needed mechanical qualities and reduce shrinkage defects, these investigations 

underlined the important role of tensile strength and shrinkage minimization in injection 

molding. They additionally highlighted the necessity of carefully considering processing 

parameters. 

Enhancing the tensile strength of recycled and virgin ABS blends is crucial to broaden their 

use in multiple sectors, such as automotive, electronics, and consumer goods. Achieving 

exceptional tensile strength in these blends necessitates adopting a methodical methodology 

that examines several factors affecting the material's mechanical properties. 

The Taguchi method, a dependable statistical tool for designing experiments (DOE), has 

demonstrated its utility in optimizing various engineering applications [17]–[21]. The capacity 

of this method to simultaneously analyze multiple parameters and their interactions has made 

it a popular choice for optimizing materials in the field of material science and polymer blends. 

As a result, this leads to experimentation that is more efficient and cost-effective. The Taguchi 

approach has been effectively utilized in numerous research to optimize injection molding 

operations. Both studies cited in references [6] and [22] utilized the Taguchi method to 

improve the tensile strength and reduce shrinkage, respectively. References [23] and [24] also 

employed the Taguchi approach to decrease shrinkage and minimize faults. References [25] 

and  [26] built upon this research by integrating fuzzy quality assessment with PCR-TOPSIS 

to enhance the optimization of the procedure. Finally, researchers [27] and [28] utilized the 

Taguchi method to minimize shrinkage and warpage in plastic injection molding. These 

studies collectively show that the Taguchi approach is useful in optimizing injection molding 

operations. 
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This study systematically use the Taguchi and PCR-TOPSIS approaches to optimize the tensile 

strength of a composite material made from a blend of recycled and virgin ABS, while 

simultaneously minimizing shrinking. This study aims to comprehensively examine the impact 

of process parameters, including blend composition, mold temperature, melt temperature, and 

packing pressure, in order to determine the conditions that maximize tensile strength and 

minimize shrinkage. The research findings enhance our comprehension of the mechanical 

properties of blended ABS made from recycled and virgin materials, and offer valuable 

recommendations for the advancement and manufacturing of high-performance polymeric 

composites. 

The study aims to facilitate the development of sustainable materials and processes that 

correspond to global standards for being resource-efficient, economical, and environmentally 

friendly. Significant new information from this study may enhance the sustainability of 

manufacturing processes. The research discusses the optimal method for integrating recyclable 

materials and enhancing the mechanical properties associated with their application, delivering 

them valuable for numerous applications. 

 

2. Methods and Methodology 

As seen in Error! Reference source not found., virgin ABS and r-ABS resin were the 

materials used in these studies. The 90:10, 80:20, and 70:30 ratios were chosen, and the ABS 

material was put together and mixed accordingly. The specimens for the tensile test were made 

using a Fanuc Roboshot S-2000i injection molding machine, which operates within a 

temperature range of 200°C to 260°C. 

Furthermore, the melt temperatures were set at 200°C, 230°C, and 260°C, while the mold 

temperature was modified to 50°C, 65°C, and 80°C. The packing pressure was set to 100, 150, 

and 200 Bar. The processing was carried out using identical equipment, utilizing the same 

configuration settings and level, as specified in Error! Reference source not found.. Error! 

Reference source not found. presents the attributes of the ABS material. 

Table 1 Control Factor and Level 

Code Control Factor 
Level 

1 2 3 

A Mixing Proportion 70% : 30% 80% : 20% 90% : 10% 

B Mold Temperature 50˚C 65˚C 80˚C 

C Melt Temperature 200˚C 230˚C 260˚C 

D Packing Pressure 100 Bar 150 Bar 200 Bar 

Table 2 Properties of ABS 

ABS Properties 

Tensile Strength (at break) 31 Mpa - 43 Mpa 

Shrinkage Rate 0,7% - 1,6% 
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Figure 1 Experiment Flow 

As a result, developing an optimal relationship and combination between variables is critical 

when producing a top-notch and cost-effective plastic part that lacks secondary or finishing 

operations.  

Several injection trials were conducted following the Taguchi method, which was used to 

create the Orthogonal Array (OA). The experimental factors were the mixing percentage (A), 

mold temperature (B), melt temperature (C), and packing pressure (D). Table 3 presents the 

levels and their corresponding values. The trials ensured that every processing condition 

achieved a state of stability, which required at least thirty minutes. Each run involved the 

extraction of a total of 10 samples, out of which 5 were specifically chosen for the purpose of 

conducting tensile tests. 

Table 1 Experimental Layout - L9 (34) OA 

Experiment 
Process Parameters 

A B C D 

1 1 1 1 1 

2 1 2 2 2 
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3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

 

3. Result and Discussion  

3.1 Result of Tensile Test 

Several studies have investigated how The injection molding process settings have an impact 

on the mechanical qualities of ABS produced products. Reference [29] and [30] both 

concluded that higher material temperature and injection pressure could improve tensile 

strength, while [31] identified melt temperature, packing pressure, and cooling time as crucial 

factors. Reference [32]–[36] also explored various aspects such as melt and mold 

temperatures, injection speed, infill density for improving mechanical properties in either 

injection molding or 3D printing processes.  

These studies demonstrate that optimizing process parameters is crucial for attaining the 

appropriate mechanical characteristics in molded ABS products. They provide valuable 

insights into the specific parameters that should be considered and manipulated to enhance the 

strength and reliability of ABS materials. 

Zwick UTM Z020 serves as the testing machine used in this study. Tensile testing was 

performed on the ASTM D638 tensile standard using 5 dumbbell-shaped samples. The 

samples were acquired by the injection molding technique and had measurements of 160 mm 

in length, 13 mm in breadth, and the thickness is 3.5 mm. The gaps across the arms and the tip 

of the measurement section should be sufficiently large to ensure that the larger ends do not 

hinder the deformation of the measuring section. The gauge's span should exceed its diameter. 

Disregarding doing this will result in a stress state that is more intricate than mere tension. The 

average results of five separate experiments were evaluated. The experiment's pieces are 

depicted in Figure 1, while the outcome of the tensile test results is displayed in Table 2. 
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Figure 1 Tensile Test Part 

Table 2 Result of Tensile Test 

Run # 
Injection Molding Parameters Mean Tensile Strength 

(MPa) 
A B C D 

1 70% : 30% 50˚C 200˚C 100 Bar 31.33 

2 70% : 30% 65˚C 230˚C 150 Bar 31.96 

3 70% : 30% 80˚C 260˚C 200 Bar 35.59 

4 80% : 20% 50˚C 230˚C 200 Bar 29.48 

5 80% : 20% 65˚C 260˚C 100 Bar 33.44 

6 80% : 20% 80˚C 200˚C 150 Bar 31.4 

7 90% : 10% 50˚C 260˚C 150 Bar 32.46 

8 90% : 10% 65˚C 200˚C 200 Bar 30.49 

9 90% : 10% 80˚C 230˚C 100 Bar 32.84 

3.2 Shrinkage Measurement 

Shrinkage analysis in injection molding is paramount in minimizing defects in the final 

product. By understanding the shrinkage behavior of a specific plastic material, manufacturers 

can optimize the process conditions to minimize defects such as warpages, sink marks, and 

dimensional inconsistencies. Shrinkage analysis helps manufacturers identify the factors 

contributing to shrinkage and allows them to make informed decisions regarding process 

parameters. By carefully analyzing the shrinkage characteristics of plastic material, 

manufacturers can determine the appropriate mold temperature, packing pressure, and cooling 

time to minimize shrinkage defects. 

Figure 2 depicts the location at which a shrinkage measure is obtained. Every specimen was 

assessed utilizing a digital caliper having an accuracy of 0.01 mm, and five measurements 

were documented for each specimen. 

 

Figure 2 Shrinkage Measurement Point 



                                           Optimization of Tensile Strength and… Fidelis Gigih Triatmaja et al. 676  
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

 

The following equation calculated the relative shrinkage: 

M

SM
flow

L

LL
S

)(100 −
=

 

LM refers to the measurement of the experimental portion within the mold, whereas LS 

represents the extent of the specimen after its temperature has cured. 

At every injection period, a transition between the injecting stage to the hold phase takes place 

after the pressure used to inject reaches the preset threshold. Due to the amorphous nature of 

ABS, a relaxation period of no less than 48 hours was implemented for all samples following 

experiments before measurements. The finding of the shrinkage measure is displayed in Table 

3. 

Table 3 Result of Shrinkage Measurement 

Run # 
Injection Molding Parameters Mean Shrinkage 

(%) A B C D 

1 70% : 30% 50˚C 200˚C 100 Bar -0.51 

2 70% : 30% 65˚C 230˚C 150 Bar 0.08 

3 70% : 30% 80˚C 260˚C 200 Bar 0.58 

4 80% : 20% 50˚C 230˚C 200 Bar 0.49 

5 80% : 20% 65˚C 260˚C 100 Bar 0.57 

6 80% : 20% 80˚C 200˚C 150 Bar 0.56 

7 90% : 10% 50˚C 260˚C 150 Bar 0.50 

8 90% : 10% 65˚C 200˚C 200 Bar 0.58 

9 90% : 10% 80˚C 230˚C 100 Bar 0.79 

3.3 SNR (Signal to Noise Ratio) Calculation 

Signal-to-noise ratio (SNR) serves as a reliable metric in a project's design process  [37]–[39]. 

The emphasis is placed on objective judgments, with a clear distinction made for subjective 

assessments. One can assess the effect of various parameter modifications on product 

performance and thereafter optimize the performance exhibited by large values and small 

noise signals. Greater signal-to-noise ratio (SNR) values suggest the best performance for 

enhancing tensile strength. Several research [40]–[47] collectively indicate that higher signal-

to-noise ratio (SNR) numbers are associated with optimal performance in optimizing tensile 

strength. These studies employed several techniques, such as Taguchi optimization, response 

surface method, and hybrid statistical instruments, to enhance the tensile strength of numerous 

materials and processes, including metal, stainless steel, paper, synthetic materials, and 3D 

printing. The consistent findings seen in these research emphasize the importance of SNR 

values in achieving the maximum strength of tensile. The equation for SNR “Larger is Better” 

is represented as: 
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Several research studies have investigated the optimization of shrinkage in injection molding, 

and some have proposed how lower SNR are indicative of optimal performance. The Taguchi 

approach and ANOVA were used by [23] and [48] to determine the optimal injection 

molding settings. Reference [23] observed a correlation between reduced signal-to-noise ratios 

(SNR) and decreased shrinkage. Similarly, to optimize shrinkage,  [49] and [50] employed 

response surface methods and multistage testing, respectively. Both research found that 

smaller SNR ratios were a sign of better efficiency. The equation for SNR “Smaller is Better” 

is represented as: 
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The outcome of the SNR Calculation is presented in Table 4. The 3rd experiment indicates the 

most favorable setting for achieving maximum tensile strength. Simultaneously, the 9th 

experiment represents the optimal condition for shrinkage. 

Table 4 Result of SNR 

Run # 
SNR 

Tensile Strength Shrinkage (%) 

1 43.9 5.61 

2 44.11 18.11 

3 45.1 4.62 

4 43.39 6.06 

5 44.47 4.84 

6 43.93 4.91 

7 44.23 5.94 

8 43.7 4.68 

9 44.32 1.98 

3.4 PCR-SNR Calculation 

PCR-SNR is utilized for assessing whether the technique falls inside the permitted range of 

parameters. A technique can be deemed acceptable if it falls within a range that is within three 

standard deviations of the mean. The PCR-SNR value is calculated by converting the SNR 

value of each response variable. The PCR-SNR is determined using a particular equation: 

s
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The outcome of the PCR-SNR calculation is presented in Table 5. According to Table 5, the 

3rd experiment demonstrates the most favorable condition for achieving high tensile strength, 

whereas the 2nd experiment is the most favorable for minimizing shrinkage. 

Table 5 PCR-SNR Calculation Result 

Run # 
PCR-SNR 

Tensile Strength Shrinkage (%) 

1 -0.04 -0.59 

2 0 10.05 

3 0.18 -1.43 

4 -0.14 -0.21 

5 0.06 -1.25 

6 -0.04 -1.19 

7 0.02 -0.31 

8 -0.08 -1.38 

9 0.04 -3.69 

3.5 PCR-TOPSIS Calculation 

The optimal outcomes for both responses can be found in separate parameter-level 

configurations. PCR-TOPSIS helps to concurrently ascertain the optimal parameter 

configurations for all responses. The calculation of PCR-TOPSIS is solved by the following 

equation: 
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The result of the PCR-TOPSIS calculation is displayed in Table 6. The best condition for the 

parameter setting is ascertained using the PCR-TOPSIS result as a guide. Afterwards, the 

average value of every parameter is computed. The parameter with the highest mean value is 

then chosen. 
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Table 6 PCR-TOPSIS Calculated Outcome 

Run # 
PCR-SNR 

di+ di- PCR-TOPSIS 
Tensile Strength Shrinkage (%) 

1 -0.04 -0.59 10.64 3.10 0.23 

2 0.00 10.05 0.19 13.74 0.99 

3 0.18 -1.43 11.48 2.28 0.17 

4 -0.14 -0.21 10.27 3.48 0.25 

5 0.06 -1.25 11.30 2.45 0.18 

6 -0.04 -1.19 11.24 2.50 0.18 

7 0.02 -0.31 10.36 3.38 0.25 

8 -0.08 -1.38 11.44 2.31 0.17 

9 0.04 -3.69 13.74 0.17 0.01 

3.6 Optimum Parameter Setting Determination 

The PCR-TOPSIS analysis result is displayed in Table 7. The optimal condition is obtained 

by combining parameter settings that yield a greater average value. Table 7 displays the 

“mixing proportion” at level 1, “mold temperature” at level 2, “melt temperature” at level 2, 

and “packing pressure” at level 2. The result indicates that the optimal condition is obtained 

by combining A1, B2, C2, and D2. The “packing pressure” is the primary characteristic, with 

“mold temperature”, “mixing proportion”, and “melt temperature” being secondary factors.   

Table 7 Optimum Condition 
 Mixing Proportion Mold Temperature Melt Temperature Packing Pressure 

Level 1 0.4592 0.2415 0.1918 0.1387 

Level 2 0.2044 0.4442 0.4174 0.4716 

Level 3 0.1421 0.1200 0.1965 0.1954 

Difference 0.317 0.324 0.226 0.3329 

Ranking 3 2 4 1 

Optimal Level A1 B2 C2 D2 

 

4. Conclusion  

The present investigation aims to optimize the injection molding process for a blend of r-ABS 

and virgin ABS material. The goal is to identify the most effective parameter settings that 

result in high-quality features, specifically tensile strength and shrinkage. The method was 

controlled by four parameters: “mixing proportion”, “mold temperature”, “melt temperature”, 

and “packing pressure”.  

Taguchi approach was employed to ascertain the experimental design, The PCR-TOPSIS 

approach is used for assessing optimal results of all quality answers. The research findings 

indicated that the ideal parameters were achieved by combining a “mixing proportion” of 

70:30, a “mold temperature” of 65°C, a “melt temperature” of 230°C, and a “packing pressure” 

of 150 Bar. Out of the four factors, the "packing pressure" is a particularly crucial feature. 
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