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This research presents a novel comparative analysis of Frequency Ratio (FR) and Analytical 

Hierarchy Process (AHP) methodologies for Landslide Susceptibility Mapping (LSM) in the Lower 

Sutlej Basin, Himachal Pradesh, India, revealing the superior predictive performance of the FR 

method through Receiver Operating Characteristic (ROC) curve evaluation. The study covers the 

districts of Kinnaur, Shimla, parts of Kullu, and parts of Manali. A total of 1561 landslide locations 

were identified, and an inventory was prepared using Google Earth and QGIS. The landslide 

locations were divided into two groups with a 70:30 ratio: 1093 locations (70% of 1561) were used 

for LSM, while the remaining 468 locations (30% of 1561) were used for validation purposes. Both 

FR and AHP modelling were carried out considering ten landslide conditioning factors. The FR 

method was selected for its statistical robustness and simplicity in handling large datasets, while 

AHP was chosen for its ability to incorporate expert judgment in the weighting of factors. The 

performance of the models was evaluated using ROC curves. The results demonstrate that FR 

achieved a higher Area Under the Curve (AUC) value of 0.742, compared to 0.712 for AHP, 

indicating superior predictive performance.  

 

Keywords: Analytical Hierarchy Process; Frequency Ratio Approach; GIS; Landslide; 
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1. Introduction 

All manuscripts Landslide Susceptibility involves predicting landslides spatially by 

integrating various internal factors such as geotechnical properties, geological conditions, 

hydrological elements, vegetation cover, and topographic attributes. The process of identifying 

landslide occurrences across a region based on these causative factors is termed landslide 

susceptibility mapping (LSM). Formally defined, LSM involves dividing the land surface into 

near-homogeneous zones and ranking them based on the potential and actual hazard due to 

landslides [1]. The evolution of LSM techniques has seen the emergence of sophisticated 

methods, including inventory analysis, bivariate and multivariate analyses, probabilistic 

frequency ratio, logistic regression, and advanced approaches such as fuzzy logic, involving 

the Analytical Hierarchy Process (AHP), Probabilistic Frequency Ratio, and analysis with 

artificial neural networks [2-12]. The qualitative approach is relatively subjective, expressing 

the proneness of landslides descriptively based on expert decisions [5, 8-10]. In contrast, the 

quantitative approach involves a numerical assessment of the relationship between slope 

instability and other controlling factors. Deterministic and statistical methods are two 

examples of the quantitative approach used in studying landslide susceptibility [3,9], [13-16]. 

As computational science advances, machines and different algorithms are introduced in 

landslide susceptibility mapping. Machine learning models, known for creating complex 

relationships between landslide causative factors, offer mapping based on historical data fed 

into the model. The availability of data, with the use of geographical information systems and 

remote sensing data, will further enhance the success of machine learning models. The study 

revealed that combining SVM with other ML models and using high-quality landslide data 

will result in more accurate mapping for landslide susceptibility [17]. A similar comparative 

analysis was conducted for popular ML methods used in landslide susceptibility mapping, 

focusing on improving accuracy by emphasizing Landslide Causative Factors (LCF). In the 

specific context of this paper, the primary focus is on a theoretical comparative study that 

delves into the effectiveness of two prominent methods in landslide susceptibility mapping: 

Frequency Ratio (FR) and Analytical Hierarchy Process (AHP). The discussion extends to 

their individual merits and the potential synergies they may offer, providing a nuanced 

perspective on their application in the field. This research aims to contribute valuable insights 

into the comparative analysis between FR and AHP, shedding light on their respective 

strengths and limitations in predicting landslide susceptibility. 

 

2. Brief Overview To Frequency Ratio And Analytical Hierarchy Process 

The Frequency Ratio Approach relies on establishing observed relationships between landslide 

occurrences and causative factors. Spatial relationships between landslide locations and 

explanatory variables can be determined through the Frequency Response Approach (FRA), 

as proposed by [6]. In this method, the frequency ratio for each subclass of individual causative 

factors is calculated, and the landslide susceptibility index is obtained by summing up these 

frequency ratio values. S. Lee conducted a comparison of Landslide Susceptibility Mapping 

(LSM) using the frequency ratio method and logistic regression in the Penang region of 

Malaysia in 2005. In a study focusing on the spatial distribution of landslides in southwest 

Calabria, Italy, [18] Goswami et al. (2011) utilized frequency area statistics. In their study [19] 
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applied the frequency ratio method to prepare LSM for the Penang region of Malaysia, 

achieving an accuracy of 80.03%. Additionally, they found that incorporating precipitation 

data in LSM improves prediction accuracy. Khan et al., 2018 used frequency ratio method for 

Landslide Susceptibility Mapping (LSM) and determined the most influential causative factor 

for landslide [21]. Fayez, Laila et al., 2018 determined Landslide Density (LD)  for validation 

of Landslide Susceptibility Map created using Frequency Ration method [22].  Also, a 

comparative LSM was carried out using five different methods the frequency ratio model, 

AHP, the statistical index (Wi), weighting factor (Wf) methods, and the logistics regression 

model, incorporating a Geographical Information System (GIS) and remote sensing techniques 

[23]. 

Landslide Susceptibility Mapping (LSM) involves the consideration of numerous variables, 

and establishing their relationships is crucial for obtaining accurate results. Utilizing a 

multicriteria decision-making approach, such as the Analytical Hierarchy Process (AHP), 

proves highly beneficial for achieving enhanced outcomes. In the AHP methodology 

introduced by Saaty in 2008, four steps are involved: problem definition, goal, and alternative 

identification, generating pairwise comparison matrices, and determining weights for priority 

selection. Experts subjectively assign numbers from 1 to 9 to variables related to landslides 

and their importance, creating comparison matrices. Subsequently, consistency ratio and index 

(CR and CI) are calculated. Aafaf El Jazouli et al., 2019 used eight landslide causing factors 

for LSM. Weight for each factor is assigned using Analytic Hierarchy Process (AHP) 

depending on its influence on the landslide occurrence [20].  Also, a comparative study of FR 

and AHP methods were carried out and results of both were validated and compared [24].As 

noted from literature review in above section there are several records existing for comparative 

study between different landslide susceptibility mapping methods [10, 14, 23-25]. In their 

work [26, 27], researchers have done comparative study for the landslide susceptibility 

mapping using machine learning models.  

 

3. Study Area 

The area of interest is situated in the Indian state of Himachal Pradesh, specifically within the 

Sutlej Basin and its adjacent regions, which encompass the districts of Kinnaur and Shimla as 

well as portions of Kullu and Manali. The geographical span of the study area is from latitudes 

30° 46′ 38.942′′ N to 32° 05′ 9.545′′ N and longitudes 76° 40′ 48.663′′ E to 78° 59′ 42.463′′ E. 

Total study area is about 13,433 sq.km. Its location map is shown in Figure 1 
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Fig. 1: Study Area 

 

4. Data Collection and Analysis 

Apart from landslide inventory, It is very important to select the appropriate causing factors 

for landslide susceptibility assessment. The landslide susceptibility modelling has required 

numerous data inputs, although this does not necessarily result in a high degree of accuracy 

while predicting landslide [28]. The correct selection of causing features depends on the type 

of landslide and its mechanism, study area characteristics, scale of the analysis, availability of 

the data, and modelling techniques to be used. Unfortunately, there is no single instruction 

available or recommended to select the set of causing factors for a given condition  for the 

LSM.  According to the available literature, the choice of landslide causing factors varies from 

one study to another. It is noticed that researchers make provision of a set of causing features 

which is used for LSM after adopting proper feature selection techniques [29]. The current 

study's feature selection process took into account a consideration of the landslide occurrences' 

nature in relation to the study area's geomorphology, geology, hydrology, meteorology, and 

human influences. Generally, the landslide causing features are divided into four groups: (i) 

topographical, (ii) hydrological, (iii) geological and anthropogenic [30]. For landslide analysis 

and modelling, we have selected 10 landslide causing factors, namely elevation, slope, 

curvature, distance to streams, NDVI, landcover, soil, geology, geomorphology, and distance 
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to roads[22]. Each factor was classified into several classes based on the standard classification 

for geological features except NDVI and all the topographical, hydrological and anthropogenic 

features along with NDVI was re-classified as per expert’s knowledge method. ArcGIS and 

QGIS were used for the data preparation and analysis. 

Data collection and analysis involves five major categories of data which is as shown below; 

1. Landslide Inventory: The first crucial step in data collection and preparation is the 

compilation of a Landslide Inventory. This inventory serves as a foundational dataset, 

cataloguing information on the occurrence and location of landslides as shown in the Figure 

below. Total 1561 landslide locations were identified and mapped on Google Earth and 

inventory of the same has been prepared using QGIS. The landslide inventory map has been 

shown in figure 2. 

2. Topographical Features: To assess the topographical characteristics of the study area, 

essential features such as Slope, Elevation, and Curvature are extracted from the Shuttle Radar 

Topography Mission (SRTM) (30m resolution) data using ArcGIS, providing valuable 

insights into the terrain morphology. 

3. Hydrological Features: Hydrological factors play a significant role in landslide 

susceptibility. Distance to River, a key parameter, is derived from the SRTM data (30m) using 

ArcGIS. This data aids in understanding the spatial relationship between landslide occurrences 

and proximity to river systems. 

4. Geological Features: The geological aspect involves a multifaceted approach, 

incorporating diverse data sources. NDVI and Landcover layers were prepared using Landsat-

8 image of the study area using ArcGIS and ERDAS. The datasets like Soil type, Geology and 

Geomorphology are collected from various sources and raster layers of these layers were 

prepared. These datasets are analysed using ArcGIS and ERDAS, providing a comprehensive 

overview of geological conditions in the study area. 

5. Anthropogenic features: Existing road network was digitised using google-earth and 

Arc-GIS. Also open source road network data obtained from Socioeconomic Data and 

Applications Centre (SEDAC) of NASA’s “Earth Observing System Data and Information 

System (EOSDIS). It was followed by generating Distance to Road layer.  
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Fig. 2: Landslide Locations 

The summary of various data used in the present study along with its source and tools used to 

generate its raster layer is shown in the table 1 below. 

Table 01: Data Collection and Preparation 
Feature Name Source (Derived from) Tools used 

Landslide Inventory 

Geological Survey of India (GSI) - 

https://bhukosh.gsi.gov.in/Bhukosh/Public 

Landsat 8, Google Earth 

ERDAS, ArcGIS 

Topographical Features 

Slope, Elevation, 

Curvature 

Shuttle Radar Topography Mission (SRTM) (30m spatial 

resolution) 
ArcGIS 

Hydrological Features 

Distance to River 
Shuttle Radar Topography Mission (SRTM) (30m spatial 

resolution) 
ArcGIS 

Geological Feature 

NDVI Landsat 8 ArcGIS 

Landcover 
Landsat 8, United States Geological Survey (USGS), 

Web Map Service (WMS) 
ERDAS, ArcGIS 

Soil Food and Agriculture Organization (FAO) ArcGIS 

Geology, 

Geomorphology 

Geological Survey of India (GSI) - 

https://bhukosh.gsi.gov.in/Bhukosh/Public 
ArcGIS 

Anthropogenic Feature 

Road, Distance to Road 

Socioeconomic Data and Applications Centre (SEDAC)  

of NASA’s “Earth Observing System Data and 

Information System (EOSDIS)”, Google Earth 

ERDAS, ArcGIS 

The maps of all the ten features selected for Landslide susceptibility modelling has been shown 

below in Figure 3. 
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Fig. 3: Various Features Selected for Landslide Susceptibility modelling 

 

5. Methodology and Analysis using Frequency Ratio 

The flow of process involved in FR approach is shown in the figure 4 below.  
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Fig. 4: Process Diagram for Frequency Ratio Approach 

The methodology employed for the Frequency Ratio (FR) Method involves following 

sequential steps.  

1) Determination of Frequency Ratio of each class of each variables by using following 

mathematical formula. The frequency ratio of each class of each variable have been calculated 

and presented in table no. 02  and figure 5 below. 

𝐹𝑅 =
𝑁𝐿𝑖/𝑁𝐿𝑡

𝑁𝐶𝑖/𝑁𝐶𝑡
 

Where;  

𝑁𝐿𝑖  : Number of landslides (LSD) in class i  

𝑁𝐿𝑡  : Total number of landslides in the entire study area 

𝑁𝐶𝑖  : Number of pixels of class i 

𝑁𝐶𝑡   : Total number of pixels in the entire study area. 

2) Determination of Relative Frequency (RF) by using following equation 

𝑅𝐹 =  
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎 𝑝𝑒𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑐𝑙𝑎𝑠𝑠

𝑆𝑢𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑎 𝑝𝑒𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 

RF provides insights into the proportion of landslides associated with each class of various 

factors. 
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3) Determination of prediction Rate (PR) (% influence) of each variable by using 

following mathematical expression. 

Prediction Rate = (Maximum RF – Minimum RF) / Minimum (Max. RF -Min. RF) 

Prediction rate (% influence) was calculated for all the ten criteria which is shown in Table 3 

4) Each class category associated with factors contributing to landslides is assigned a 

Relative Frequency (RF). Following this assignment, reclassification of each layer is 

undertaken based on the designated Relative Frequency values. 

5) The subsequent step entails the generation of the Landslide Susceptibility Index (LSI) 

map, achieved by summing the products derived from the Relative Frequency and Prediction 

Rate across all layers. 

Table 02: Calculation of Frequency Ratio, Relative Frequency and Prediction Rate 

 
Sr. 

No 

Lay

er 

Category Nos. 

Of 

LSD 
(NLi) 

LSD

% 

Area 

(No. 

Of 
Pixel

) 

NCi 

Ar

ea 

% 

FR 

(FRi) 

RF RF% RF 

(INT) 

Min 

(RF) 

Max 

(RF) 

Max 

RF - 

Min 
RF 

Min 

(Max 

RF – 
Min 

RF) 

PR 

1 

S
lo

p
e 

0 - 15 41 3.75 1837

691 

12.

31 

0.30 0.05 5.10 5.00 
     

15-30 378 34.5

8 

6584

863 

44.

12 

0.78 0.13 13.13 13.00 
     

30-45 582 53.2
5 

5733
217 

38.
41 

1.39 0.23 23.21 23.00 
     

45-60 90 8.23 7550

76 

5.0

6 

1.63 0.27 27.25 27.00 
     

60 or 
greater 

2 0.18 1460
6 

0.1
0 

1.87 0.31 31.31 32.00 
     

  NLt= 1093 
 

1492

5453 

 
5.97 1.00 

  
0.05 0.31 0.26 0.02 10.50 

2 

N
D

V
I Dead Plant 

or Object (-

1 to 0.1) 

307 28.0

9 

6271

189 

42.

02 

0.67 0.21 20.68 21.00 
     

Unhealthy 
Plant (0.1 

to 0.25) 

347 31.7
5 

3262
865 

21.
86 

1.45 0.45 44.92 45.00 
     

Healthy 

plant (0.25 

to 1) 

439 40.1

6 

5391

399 

36.

12 

1.11 0.34 34.40 34.00 
     

  NLt= 1093 
 

1492

5453 

 
3.23 1.00 

  
0.21 0.45 0.24 0.02 9.72 

3 

E
le

v
at

io
n
 

Less than 

2000 m 

431 39.4

3 

3685

906 

24.

70 

1.60 0.35 35.39 35.00 
     

2000 - 3000 

m 

299 27.3

6 

3710

140 

24.

86 

1.10 0.24 24.39 24.00 
     

3000 - 4000 
m 

215 19.6
7 

2451
031 

16.
42 

1.20 0.27 26.55 27.00 
     

4000 - 5000 

m 

147 13.4

5 

3298

312 

22.

10 

0.61 0.13 13.49 14.00 
     

More than 

5000 m 

1 0.09 1780

064 

11.

93 

0.01 0.00 0.17 0.00 
     

  NLt= 1093 
 

1492
5453 

 
4.51 1.00 

  
0.00 0.35 0.35 0.02 14.12 

4 

C
u

rv
at

u
re

 

Upwardly 

Convex (-) 

542 49.5

9 

7203

367 

48.

26 

1.03 0.35 34.75 35.00 
     

Linear (0) 28 2.56 4009
20 

2.6
9 

0.95 0.32 32.26 32.00 
     

Upwardly 

Concave 

(+) 

523 47.8

5 

7321

166 

49.

05 

0.98 0.33 32.99 33.00 
     

  NLt= 1093 
 

1492

5453 

 
2.96 1.00 

  
0.32 0.35 0.02 0.02 1.00 

5 

D
is

ta
n

ce
 f

ro
m

 R
iv

er
 

Less than 

100 m 

85 7.78 7377

00 

4.9

4 

1.57 0.18 18.02 18.00 
     

101-200 m 120 10.9

8 

6610

60 

4.4

3 

2.48 0.28 28.39 28.00 
     

201-300 m 76 6.95 7110
94 

4.7
6 

1.46 0.17 16.72 17.00 
     

301-400 m 69 6.31 6021

53 

4.0

3 

1.56 0.18 17.92 18.00 
     

401-500 m 39 3.57 6467
16 

4.3
3 

0.82 0.09 9.43 9.00 
     

More than 

500 m 

704 64.4

1 

1156

6730 

77.

50 

0.83 0.10 9.52 10.00 
     

  NLt= 1093 
 

1492

5453 

 
8.73 1.00 

  
0.09 0.28 0.19 0.02 7.60 

6 Less than 
100 m 

248 22.6
9 

4547
34 

3.0
5 

7.45 0.56 56.11 56.00 
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D
is

ta
n

ce
 f

ro
m

 

R
o
ad

 

101-200 m 26 2.38 3191
34 

2.1
4 

1.11 0.08 8.38 8.00 
     

201-300 m 24 2.20 3115

78 

2.0

9 

1.05 0.08 7.93 8.00 
     

301-400 m 26 2.38 2513

78 

1.6

8 

1.41 0.11 10.64 11.00 
     

401-500 m 28 2.56 2568
73 

1.7
2 

1.49 0.11 11.22 11.00 
     

More than 

500 m 

741 67.8

0 

1333

1756 

89.

32 

0.76 0.06 5.72 6.00 
     

  NLt= 1093 
 

1492
5453 

 
13.27 1.00 

  
0.06 0.56 0.50 0.02 20.19 

7 

G
eo

lo
g

y
 

Archaean 

(?) - 

Proterozoic 
(undifferent

iated) 

296 27.0

8 

4263

252 

28.

56 

0.95 0.05 5.26 5.00 
     

Mesoproter

ozoic 

139 12.7

2 

1602

593 

10.

74 

1.18 0.07 6.57 7.00 
     

Carbonifero

us - 

Permian 

18 1.65 2765

70 

1.8

5 

0.89 0.05 4.93 5.00 
     

Neoprotero

zoic 

(undifferent

iated) 

105 9.61 1573

188 

10.

54 

0.91 0.05 5.06 5.00 
     

Neoprotero

zoic 

(Upper) 

1 0.09 2141

16 

1.4

3 

0.06 0.00 0.35 0.00 
     

Permian 30 2.74 2215

96 

1.4

8 

1.85 0.10 10.26 10.00 
     

Palaeozoic 34 3.11 1475
214 

9.8
8 

0.31 0.02 1.75 2.00 
     

Proterozoic 

(undifferent

iated) 

120 10.9

8 

1031

766 

6.9

1 

1.59 0.09 8.81 9.00 
     

Ordovician 

- 
Carbonifero

us 

22 2.01 7824

34 

5.2

4 

0.38 0.02 2.13 2.00 
     

Cambrian-
Ordovician 

30 2.74 5860
72 

3.9
3 

0.70 0.04 3.88 4.00 
     

Neoprotero

zoic 
(Lower) 

196 17.9

3 

1574

755 

10.

55 

1.70 0.09 9.43 9.00 
     

Category Nos. 
Of 

LSD 

(NLi) 

LSD
% 

Area 
(No. 

Of 

Pixel
) 

NCi 

Ar
ea 

% 

FR 
(FRi) 

RF RF% RF 
(INT) 

Min 
(RF) 

Max 
(RF) 

Max 
RF - 

Min 

RF 

Min 
(Max 

RF – 

Min 
RF) 

PR 

Eocene - 

Miocene 

7 0.64 1568

64 

1.0

5 

0.61 0.03 3.38 3.00 
     

Creataceou

s 

0 0.00 3988 0.0

3 

0.00 0.00 0.00 0.00 
     

Jurassic - 

Creataceou

s 

0 0.00 4727

8 

0.3

2 

0.00 0.00 0.00 0.00 
     

Pliocene -  

Pleiostocen
e 

3 0.27 8970

4 

0.6

0 

0.46 0.03 2.53 3.00 
     

Palaeoprote
rozoic 

18 1.65 4554
3 

0.3
1 

5.40 0.30 29.94 30.00 
     

Mesoproter

ozoic - 

Neoprotero
zoic 

(undifferent

iated) 

74 6.77 9805

20 

6.5

7 

1.03 0.06 5.72 6.00 
     

  NLt= 1093 
 

1492
5453 

 
18.02 1.00 

  
0.00 0.30 0.30 0.02 12.00 

8 

L
U

L
C

 

Barren 

Unculturabl

e 

132 12.0

8 

1423

862 

9.5

4 

1.27 0.14 13.60 14.00 
     

Waterbody 

River/Reser
voir 

14 1.28 1714

08 

1.1

5 

1.12 0.12 11.98 12.00 
     

Forest 288 26.3
5 

4166
409 

27.
91 

0.94 0.10 10.14 10.00 
     

Grass/Grazi

ng 

209 19.1

2 

1890

645 

12.

67 

1.51 0.16 16.21 16.00 
     

Builtup 45 4.12 2641
26 

1.7
7 

2.33 0.25 24.99 25.00 
     

Agriculture 186 17.0

2 

2113

802 

14.

16 

1.20 0.13 12.91 13.00 
     

Barren 

Rocky 

215 19.6

7 

3209

298 

21.

50 

0.91 0.10 9.83 10.00 
     

Snow and 

Glacier 

4 0.37 1685

903 

11.

30 

0.03 0.00 0.35 0.00 
     

  NLt= 1093 
 

1492

5453 

 
9.31 1.00 

  
0.00 0.25 0.25 0.02 9.87 

9 

G
eo

m
o

rp
h
o

lo
g
y

 

Moderately 
Dissected 

Hills and 

Valleys 

255 23.3
3 

2017
223 

13.
52 

1.73 0.02 2.13 2.00 
     

Low 

Dissected 

Hills and 
Valleys 

0 0.00 1154 0.0

1 

0.00 0.00 0.00 0.00 
     

Piedmont 
Slope 

15 1.37 3523
54 

2.3
6 

0.58 0.01 0.72 1.00 
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There are total 1561 landslide locations in the landslide inventory. These locations were 

divided into two groups i.e Training set(70%) and Test set(30%). There are total 1093 

landslide locations in training set and 468 locations in test set. The training set was used to 

determine FR and subsequent generation of LSM, whereas test set was used to validate the 

effectiveness of LSM by generating ROC curve, AUC and LD. 

 

Fig. 5: Frequency Ratio of each class of all factors 
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As shown in figure no. 5 above, The FR of “Mass Wasting Products” class of Geomorphology 

layer was found to be maximum i.e. 59.95 amongst all the classes of all factors. It is also 

noticed that there are many categories of various variables are relatively insignificant to 

Landslide occurrences.  Also, the prediction rate (PR) of Geomorphology was highest i.e.29.64 

amongst all the variables which is quite evident from the table 03 given below. This results 

confirms the importance of Geomorphology feature for landslide occurrences. 

Table 03: Prediction Rate of landslide causing factors 
Layer PR 

Curvature 1 

Distance from River 7.59 

NDVI 9.71 

LULC 9.87 

Slope 10.50 

Geology 11.99 

Soil Type 12.29 

Elevation 14.11 

Distance from Road 20.19 

Geomorphology 29.64 

The construction of the landslide susceptibility map involved the computation and 

categorization of Landslide Susceptibility Indexes (LSI) across the entire study area. LSI 

serves as an indicator of the area's susceptibility to landslide occurrences, with smaller values 

suggesting lower vulnerability. The calculation of LSI relies on the Frequency Ratio (FR) 

values established during the training process.  With the summation of ten factors as shown in 

below mathematical formula, Landslide susceptibility index map was generated. To create a 

comprehensive Landslide Susceptibility map, the LSI map was then reclassified into five 

distinct classes starting from very low to very high as per Jenks Natural Break classification 

method which is shown below in figure 6. 

𝐿𝑆𝐼 = ∑ 𝑃𝑅𝑖 ∗ 𝑅𝐹𝑖

10

𝑖=1
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Fig. 6: Landslide Susceptibility Map using FR Approach 

Also, the Landslide Density (ratio of number of landslide occurrences and % area of each 

category) for each category has been determined using remaining 468 landslide locations kept 

aside as test set which has been shown in the table 4 below. FR modelling produced Maximum 

Landslide density of 37.31 for “Very High” category of LSM. This value is significantly high 

when it is compared with correspond values against rest of the categories. This implies that 

the significant number of landslides fall within relatively small area of “Very High” category 

of LSM. Also, the gradual increase in the LD values in the last column of the Table.04 can be 

seen as category becomes from “Very Low” to “Very High”. Also, it can be seen that there is 

only one landslide location is falling in  “Very Low” category when tested on test set. This 

shows the true nature of the prediction surface of LSM.  

Table 04: Landslide Density using FR Approach (Training set) 

Sr. No Category 

Nos. Of LSD 

(NLi) LSD% Area (No. Of Pixel) NCi 

Area 

% 

Landslide 

Density 

1 Very Low 1 0.21 2118483 14.19 0.07 

2 Low 46 9.83 3042120 20.38 2.26 

3 Moderate 146 31.20 5559024 37.25 3.92 

4 High 160 34.19 3745741 25.10 6.38 

5 Very High 115 24.57 460085 3.08 37.31 

The final step involves the accuracy evaluation of the Landslide Susceptibility map. This 

evaluation utilizes landslide inventory data and includes the computation of ROC (Receiver 

Operating Characteristic) curves and AUC (Area Under the Curve) to validate the 

effectiveness and reliability of the FR Methodology. The ROC curve for FR modelling has 

been shown in figure 7 below which resulted in AUC = 0.742.  
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Fig. 7: ROC Curve for FR 

Methodology and Analysis using Analytical Hierarchy Process (AHP) 

The flow of process involved in AHP approach is shown in the figure 8 below. The 

methodology and analysis in AHP are divided into 7 different steps which are as discussed 

below; 

1. Pairwise Comparison Matrix:  In constructing the pairwise comparison matrix for the 

Analytical Hierarchy Process (AHP), ten factors including Geomorphology, Distance from 

Road, Elevation, Soil Type, Geology, Slope, Land Use Land Cover (LULC), NDVI, Distance 

from River, and Curvature were systematically evaluated using the Saaty scale. This facilitated 

a thorough analysis of the relative importance and interrelationships among these factors 

within the decision-making framework. The use of the Saaty scale ensured a consistent and 

standardized approach to quantify their importance. Table 5 shows the Satty scale in which 

Intensities of 2, 4, 6, and 8 can be used to express intermediate values. Additionally, intensities 

such as 1.1, 1.2, 1.3, etc., can be used for elements that are very close in importance. Pairwise 

comparison matrix showing the relative importance of one variable over the other in the 

context of Landslide occurrences and corresponding normalised principal Eigen vector 

(criteria weight) is shown below in figure 9. 

Table 05: SATTY Scale for Pairwise Comparisons (Adopted from Satty, 1990) 
Intensity of Importance Definition Explanation 

1 Equal importance Two elements contribute equally to the objective 

3 Moderate importance 
Experience and judgment moderately favour one 

element over another 

5 Strong importance 
Experience and judgment strongly favour one 

element over another 

7 Very strong importance 
One element is favoured very strongly over 

another; its dominance is demonstrated in practice 

9 Extreme importance The evidence favouring one element over another 
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is of the highest possible order of affirmation 

 

Fig.8: Methodology Process Diagram of AHP 

 

Fig.9: Pairwise comparison matrix 

2. Normalised Pairwise Comparison Matrix: This matrix standardizes the priorities 

attributed to each factor, ensuring a balanced and normalized representation of their relative 

importance in the decision-making process. 
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3. Determination of Weight Criteria: Normalised value obtain in previous steps are 

averaged and criteria weight is obtained. 

4. Determining Weighted Sum: Weight sum is obtained by multiplying the weight 

criteria with Pairwise comparison matrix obtained in Step 1. Then the summation of respective 

values row wise will give the weighted sum.  

5. Determining Consistency vector (Ratio): The division of weighted sum and weight 

criteria gives the consistency vector as shown in Table 6. 

Table 06: Determination of Consistency Vector (Ratio) 
Weighted Sum 

Value 

Criteria 

Weight 

Consistency Vector 

(Ratio) 

2.36 0.22 10.58 

1.63 0.15 10.60 

1.42 0.13 10.62 

1.14 0.11 10.65 

0.99 0.09 10.53 

0.86 0.08 10.41 

0.75 0.07 10.31 

0.65 0.06 10.24 

0.48 0.05 10.34 

0.25 0.02 10.32 

6. Determining Consistency Index and Ratio: In the Analytical Hierarchy Process 

(AHP), the Consistency Index is calculated by determining the average of the Consistency 

Vector (Ratio) obtained in the previous step. The Consistency Ratio (CR), essential for 

evaluating the reliability of the comparisons, is then obtained by dividing the Consistency 

Index (CI) by its random index counterpart (Random consistency Index(RI)) which is given 

in table 7 below. Lower values indicate better consistency in the decision-making hierarchy. 

If the value of CR is less than or equal to 10 percent, the inconsistency amongst the variable 

relationship is acceptable, but if the CR is greater than 10 percent, the pairwise comparison 

matrix needs to be revised (Saaty 1977). In the current analysis the value of CR is determined 

and it is found to be 0.033 which is less than 0.1. 

Table 07: Random Constancy Index(RI) 
N 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.51 

𝐶𝐼 =  
𝜆−𝑛

𝑛−1
   

  𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
  

7. Landslide Susceptibility Index: The obtained weight is then integrated within the 

causative factors with the equation shown below where 𝑅𝑖 is rating class and 𝑊𝑖 Weighted 

index for each of conditioning parameter. Each category of each causative factors were 

assigned proper weight according to its influence on landslide occurrences. These weights 

were multiplied by the criteria weight of respective landslide causing factors which were 

determined in the step 3 above. If was followed by the arithmetic sum of multiples of weight 

and criteria weight as per the formula shown below and landslide susceptibility index (LSI) 



735 Yashodhar P. Pathak et al. Evaluating Landslide Susceptibility in the....                                                                                                            
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

map was prepared. The resulted LSI map is classified into five categories as per Jenks natural 

breaks classification method which gives five different categories starting from very low to 

very high and Landslide Susceptibility map is prepared as shown in figure 10 below. Also, the 

Landslide Density for each category has been determined which has been shown in the table 

8 below.  AHP produced maximum density of 29.38 for “Very High” category of Landslide 

susceptibility. Also, It can be seen that 37 landslide locations fall under “Very Low” category 

of AHP model, whereas in FR model there was only one landslide was falling within the said 

category. 

𝐿𝑆𝐼 =  𝑊𝑖 ∗ ∑ 𝑅𝑗

𝑛

𝑗=1
 

Table 08: Landslide Density using AHP Approach (Training Set) 
Sr. 

No Category 

Nos. Of LSD 

(NLi) LSD% 

Area (No. Of Pixel) 

NCi 

Area 

% 

Landslide 

Density 

1 Very Low 37 7.91 3356286 22.49 1.65 

2 Low 94 20.09 4736244 31.73 2.96 

3 Moderate 62 13.25 2563227 17.17 3.61 

4 High 178 38.03 3776963 25.31 7.03 

5 Very High 97 20.73 492733 3.30 29.38 

 

Figure 10: Landslide Susceptibility Map using AHP 

Finally, the validation of the effectiveness and reliability of landslide susceptibility modelling 
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was done by utilizing landslide inventory data and subsequent generation of ROC (Receiver 

Operating Characteristic) curves and computing AUC (Area Under the Curve). The ROC 

curve for AHP modelling has been shown in figure 11 below which resulted in AUC = 0.712.  

 

Fig. 11: ROC Curve for AHP 

 

6. Results and Discussion 

Considering socioeconomic aspect of landslides,  the Frequency Ratio (FR) and Analytical 

Hierarchy Process (AHP) modelling were performed to determine the effectiveness of both 

the models in determining landslide susceptibility in the lower Sutlej basin, Himachal Pradesh, 

India. Landslides have the potential to devastate forests, farms, fisheries, industry, 

communication networks, and drinking water quality [22]. Thus, it is desirable to create a 

landslide susceptibility map in order to properly develop and manage areas that are prone to 

landslides. A landslide inventory was created by digitising total of 1561 landslide locations 

using Google Earth and ArcGIS.  In order to assess the spatial association between these 

characteristics and landslide occurrences, ten landslide conditioning factors (slope, elevation, 

curvature, NDVI, Soil, landuse, geomorphology, geology, distance to streams and distance to 

road) were taken into account. Fayez, Laila et al., 2018 used eleven landslide causing factors 

for LSM and the performance was validated by subsequent quantification of LD. It produced 

the LD of 1.85 for Very High category. 

In this study two quantitative methods were employed to map the landslide susceptibility. The 

FR method relies on the calculation of Frequency Ratios for different conditioning factors, 

emphasizing the observed relationships between these factors and landslide occurrences. On 

the other hand, the AHP method involves a multicriteria decision-making approach, 
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incorporating expert judgments through pairwise comparisons of various factors to derive their 

relative importance. The results obtained from the application of FR and AHP reveal variations 

in the Landslide Susceptibility Index (LSI) across the study area. The Landslide Susceptibility 

Index (LSI) serves as an indicator of the extent to which an area is prone to landslide 

occurrences. Areas with smaller LSI values indicate lower susceptibility to landslides, while 

higher values signify increased vulnerability. A comparative analysis of the two methods 

demonstrates nuances in their predictive accuracy. Receiver Operating Characteristics curves 

(ROC) along with Area under the curve (AUC) for both FR and AHP models were derived. 

Basically, ROC is the plot between True positive rate and False positive rate. Also, higher the 

value of AUC (≤ 1) represents high degree of accuracy of the final LSM. The FR method 

yields an AUC (Area Under the Curve) value of 0.742 [Fig.7], indicating a satisfactory 

predictive performance. Conversely, the AHP method produces a slightly lower AUC value 

of 0.712 [Fig.11].  Further, Landslide Density (LD) for all the categories of both the landslide 

susceptibility maps were derived using test set data. It can be seen that FR resulted in higher 

Landslide Density value of 37.31[table 4] for “Very high” category whereas AHP gave lesser 

density value of  29.38 [table 11] for the same category. Also LD was worked out by 

considering the entire landslide inventory (1561 landslide locations) for both FR and AHP 

models[table 09, Fig. 12(a)]. Again, there are more landslides locations are falling in “Very 

high” category of FR model than AHP model. Also, it can be seen that the number of landslide 

locations falling in “Very Low” category of FR is significantly less than that in case of AHP 

[Fig.12(a)]. The LD values for “Low”, “Moderate” and “High” categories are almost similar 

for both FR and AHP models when tested on total inventory [Table 09]. 

Table 09: Landslide Density for FR and AHP Approach 
Sr. 

No Category 

Nos. Of LSD 

(NLi) (FR) 

Landslide 

Density (FR) 

Nos. Of LSD 

(NLi) (AHP) 

Landslide Density 

(AHP) 

1 Very Low 1 0.07 123 5.47 

2 Low 172 8.44 300 9.45 

3 Moderate 454 12.19 233 13.57 

4 High 556 22.15 593 23.43 

5 Very High 378 122.63 312 94.51 
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a) 

 

b)        c) 

Fig.12: Analysis of FR and AHP on the susceptibility maps: a) FR values of classes of the 

maps, (b) percentage of landslide pixels of the maps, and (c) percentage of class pixels of the 

maps 

Moreover, the percentage of class pixels [Fig.12b] and percentage of landslide pixels [Fig.12c] 

of the LSM for both FR and AHP models have been plotted and compared the values for 

different class of the final susceptibility maps. Looking at the shape of both the curves, It is 

quite evident that the FR model could classify the index map having less non-linearity, whereas 

high degree of non-linearity can be seen in AHP model. 

Figure 13 below shows the performance of FR and AHP model on different dataset i.e 

Training, Testing and entire landslide inventory (Training + Testing). One can see the 
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consistence performance of FR and AHP on all the three dataset. FR performed consistently 

better than AHP during validation using LD. FR produces consistently high and low value of 

LD for “Very High” and “Very Low” category respectively when compared to AHP. The 

performance of both the methods remained consistent when tested using Training, Testing and 

entire data set. This confirms the absence of overfitting in the LSM in both the classified maps. 

 

Fig.13: Landslide Density for FR and AHP (Training, Testing, Training + Testing) 

The small discrepancy suggests a nuanced difference in the predictive capabilities of the two 

methods, emphasizing the importance of considering multiple approaches for a comprehensive 

understanding of landslide susceptibility. The validation process using AUC and LD values 

serves as a crucial step in assessing the reliability and effectiveness of the developed LSM 

models. 
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contrast, the AHP method yielded a slightly lower AUC value of 0.712 and an LD value of 

94.51. These results demonstrate that the FR method outperforms AHP in terms of predictive 

accuracy for landslide susceptibility mapping in the study area. While this study offers 

valuable insights, future research should aim to incorporate dynamic factors, enhance data 

collection methods, and explore advanced machine learning techniques to further improve the 

accuracy and robustness of LSM. 
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