

Design and Evaluation of Nanotechnology Based Lung Cancer Therapy

Manish Nandy¹, Ahilya Dubey²

¹Assistant Professor, Department of CS & IT, Kalinga University, Raipur, India. ²Research Scholar, Department of CS & IT, Kalinga University, Raipur, India.

Lung cancer is the most common type of cancer worldwide. According to the American Lung Association, there were 2.1 million new cases and 1.8 million deaths from lung cancer in 2018. The most common type of lung cancer, accounting for 80–85% of cases, is non-small cell lung cancer (NSCLC), according to the Lung Cancer Alliance. Small-cell lung cancers (SCLC) account for 15–20% of all lung tumors. Two out of every three patients with SCLC are already in the extensive stage when they are diagnosed. Cancer can spread to any part of the body once it gets into the lymph nodes and bloodstream. When treatment starts before the cancer spreads outside of the lungs, the prognosis is better. Age, general health, and the degree to which patients respond to treatment are additional variables. Lung cancer is typically discovered in advanced stages since early signs are often missed. A general idea of what to expect is provided by survival rates and other statistics. Individual differences are noteworthy, though. The data on current survival does not provide a complete picture. New therapies for stage 4 non-small cell lung cancer (NSCLC) have been authorized recently. Some patients are living far longer thanks to conventional therapy than they did in the past.

Keywords: Nano technology, drug delivery system, Health.

1. Introduction

Smoking is the primary risk factor for lung cancer. That covers pipes, cigars, and cigarettes. Thousands of hazardous chemicals are present in tobacco products. The risk of developing lung cancer is 15–30 times higher for cigarette smokers than for nonsmokers, according to the Centres for Disease Control and Prevention (CDC)Trusted Source [5]. The risk of lung cancer increases with duration of smoking [1]. Reducing your smoking can reduce that danger. One other significant risk factor is breathing in secondhand smoke. Approximately 7,300 nonsmokers in the US pass away from secondhand smoke-related lung cancer each year [3]. The naturally occurring gas radon raises their risk of developing lung cancer. Radon emanates from the earth and seeps into structures via tiny fissures. For nonsmokers, it is the primary cause of lung cancer. They can find out if the radon level in their house is dangerous with a quick at-home test. In the job, exposure to harmful compounds like asbestos or diesel exhaust increases the chance of lung cancer development. Following a physical examination and

imaging studies, X-ray, MRI, CT, and PET scans reveal an abnormal mass. These scans can detect tiny lesions and provide more detail. Sputum cytology: If a patient coughs up phlegm, a microscopic examination can detect the presence of cancerous cells. If tumour cells are malignant, this can be established by biopsy [11]. Generally speaking, getting a second opinion before starting treatment is a good idea. Individuals with non-small cell lung cancer (NSCLC) respond differently to treatment [8].

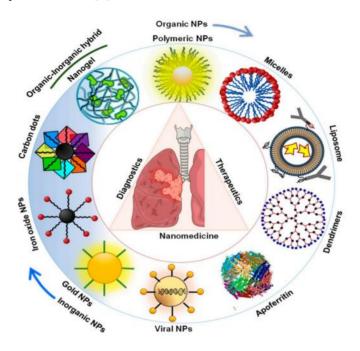


Figure 1: Application of nano in lung cancer therapy

Nanotechnology offers new approaches to the development of safer and more effective disease therapies. Despite the fact that a number of nanotherapeutics have gained clinical approval, the most intriguing uses of nanotechnology for the benefit of patients are yet in the future [2]. Because of their distinct natural, optical, attractive, electronic, transport, and warm capacities—capabilities not seen at the sub-atomic or macroscale—nanoparticles can be used in restorative applications. These components are the outcome of nanoparticles' enormous surface area to volume ratios and similar size range to those of light frequencies. When compared to conventional chemotherapeutic specialists or naturally occurring macromolecule drugs, the larger size of nanoparticles enables the coordination of numerous supportive components near dynamic drug fixes. These components can promote solubilization, protect against weakening, discharge delayed, immunoevade, infiltrate tissue, image, target, and activate upon activation. Similarly, the body handles nanoparticles differently than it does conventional medications. In particular, nanoparticles' hemodynamic properties and biodistribution examples are evident. Surprisingly, taking advantage of the cooperations that exist at the bio-nano interface can lead to improved drug delivery.

The remainder of the document is structured as follows: The survey's classification scheme is provided in Section 2, and a summary of the suggested architecture is given in Section 3. A *Nanotechnology Perceptions* Vol. 20 No.S3 (2024)

summary and comparison of the findings from the several studies covered in this taxonomy can be found in Section 4. Section 5 finally brings the paper to a conclusion.

2. Literature Review

In [14] developed a nano-transporter typifying Crizotinib (approved for EML4-ALK combination positive cellular breakdown in the lungs) using polylactide tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS). Supported delivery, a noticeable early and late apoptosis, and unexpected cytotoxicity in NCIH3122 cellular breakdown in the lung cells were all demonstrated by this nano-transporter. Through endocytosis, the polymeric nanoparticle was ingested by the cells. It's interesting to note that a recent study [4] examined the feasibility of treating cellular breakdown in the lungs with chronomodulated chemotherapy in relation to polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles stacked with paclitaxel (PTX). The authors identified the optimal time of day to introduce drug-stacked nano-transporters by interpreting the fundamental role circadian rhythms play in the propagation of malignant development.

The combination therapy demonstrated a remarkable concealment of cancer development in vivo, and 15HALO proved to be the most effective chemotherapeutic measurement. Wang et al.'s ongoing research has utilised mesenchymal stem cells (MSC) as a drug delivery vehicle loaded with docetaxel (DTX) nanoparticles to circumvent the low concentration limit of nanoparticles. MSC demonstrated its frequency in drug stacking when viewed in comparison to fibroblasts. Both creature and cell assays supported the intercellular migration of nanoparticles from MSC to malignant growth cell. Moreover, it prevented the development of in vivo crucial cancer [12]. We were shocked to learn that Ganesh et al. studied HA-PEI/Stake nano-transporters for CD44-designated siRNA conveyance to cellular breakdown in the lung cells. They oversaw a thorough analysis using construction action to determine the optimal production of siRNA epitome. Overall, the indicated HA-PEI/Stake nanosystems encasing SSB/PLK1 siRNA demonstrated enlarged cell take-up and succession explicit quality knockdown in vivo in both touchy and safe A549 essential and metastatic cells [6].

TPGS functionalized polydopamine-covered mesoporous silica nanoparticles (NPs) was added to an effective pH-responsive nanocarrier framework in [7] to carry doxorubicin (DOX), a model prescription for the treatment of medication-safe non-little cell cellular breakdown in the lungs. The molecular size, drug stacking, and medicine discharge profile of these nanoparticles are all appropriate. Surface morphology, surface charge, and surface material properties can also be depicted using a variety of methods, such as warm gravimetric analysis (TGA), dynamic light dispersing (DLS), X-beam photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) method, and Fourier change infrared spectroscopy (FTIR).

3. Materials And Methods

This work aims to design and optimise the targeting ability of chitosan nano formulations loaded with docetaxel (DTX), decorated with cetuximab (CTX), and stabilised with TPGS. Additionally, it will assess the physicochemical properties, in vitro release characteristics, in *Nanotechnology Perceptions* Vol. 20 No.S3 (2024)

vitro cellular uptake, cytotoxicity, apoptosis, and wound-healing studies on A549 cells, as well as the in vivo pharmacokinetics, histopathology studies in rats, and in-vivo efficacy in a model of lung cancer in mice induced with B(a)P. The outcomes of the marketed DTX (DocelTM) injection and the non-CTX adorned chitosan nano formulation were contrasted with the CTX decorated targeted chitosan nanoparticle formulation [13].

Material

Neon Labs generously donated docetaxel (99.56% pure). We purchased DocelTM from RPG in Mumbai. The manufacturer of cetuximab (Erbitux®) was Mumbai-based Merck Specialities Ltd. SRL, Mumbai was the supplier of high atomic weight chitosan. TPGS was freely provided by Isochem in France. In Bangalore, we bought sodium tripolyphosphate (Na-TPP) from Sigma-Aldrich. In California, USA, Range Research Facilities Inc. provided one kDa dialysis layer. The foetal ox-like serum was provided by Himedia, Mumbai, India, along with DMEM, PBS pH 7.4, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Parsons Items, located in Kolkata, India, provided 96-well culture plates and culture jars with a variable limit. Trypsin-EDTA, antimicrobial, and antimitotic penicillin-Streptomycin were provided by Genetix Biotech Asia, located in Mumbai, India. AAT Bioquest Inc. in the USA was the supplier of the phalloidin-tetramethyl rhodamine mixture.

Methods

Quality by Plan (QbD), a pro-active, cutting-edge, and rational approach to item plan and improvement, was applied in the creation of DTX stacked chitosan nanoparticles (NP).

Nanoparticle preparation

NP was planned using soluble dissipation associated with modified ionic cross-connecting. A weaker solution of sodium hydroxide was used to lower the pH to 6. After adding 1 millilitre of chloroform containing 20 mg and 3 mg of TPGS and DTX to the previously stated chitosan arrangement, the mixture was emulsified using an ultrasonic test sonicator. To get rid of the chloroform, the next nanoemulsion was shook for seven hours, which caused the medication to start encouraging inside the chitosan nanomatrices. So far, 2.5 millilitres of sodium tripolyphosphate (NaTPP) have been added at a concentration of 0.5 mg/ml to induce the chitosan polymer chains to cross-intersect, strengthening the NP. After centrifuging the resulting NP at 3,000 rpm for 10 minutes, the larger particles that settled were disposed of [9].

Characterization of Albendazole and Paclitaxel

• Evaluation of anticancer efficacy of NP

The mice with light skin tones from Switzerland were divided into five groups, each including six animals. Gathering I (the negative control) received oral organisation of olive oil for an extended period of time. Benzo(a)pyrene (B(a)P) 50 mg/kg body weight broken up in olive oil orally twice a week for a long period was administered to Gathering II creatures, who filled in as the model control, in order to produce cellular breakdown in the lungs by the sixteenth week. As in Gathering II, creatures in Gathering III received non-designated NP (i.e., 7.5 mg DTX/kg body weight) for a considerable amount of time after their underlying B(a)P component. After receiving B(a)P treatment, creatures in Gathering IV received allocated NP treatment (just like in G-III) for a significant amount of time. The histological analysis verified

the induction of lung cancer. After receiving B(a)P treatment, animals in Group V were given normal Docel for four weeks in order to examine any potential cytotoxicity brought on by DTX. Water and food will be served unlimited. The mice's health was tracked daily during the trial, and every week their body weights were measured. In order to calculate the percentage of survivors, survival analysis was performed using Kaplan-Meier survival curves [10]. The mice were put to death after 16 weeks after being put to sleep intraperitoneally with urethane (2 g/kg body weight). The lungs were then removed and preserved in 10% formalin before paraffin blocking was carried out. Following standard preparation, 5 μ m-thick paraffin slices were placed on several glass slides. Hematoxylin and eosin (HE) was applied to the aforementioned sections, and ImageJ software was used to count the number of cancer cells in these sections.

4. Results and Discussions

The produced formulations' stability was not significantly affected by the surface charge, EE, or size changes, according to stability studies conducted on them. When freeze-dried samples were reconstituted, a little and negligible increase in NP size was seen, and the size distribution also showed some minor changes. The size and size distribution of NP do not significantly change when incubated in plasma; instead, a little increase in size may result from the NP surface's natural opsonization of plasma proteins. After serum hatching, there has been no means to see any progression in the formed NP's infinite size dissemination. After reconstitution and a month at 4 °C, the freeze-dried NP were thought to be stable in terms of perpetual size circulation.

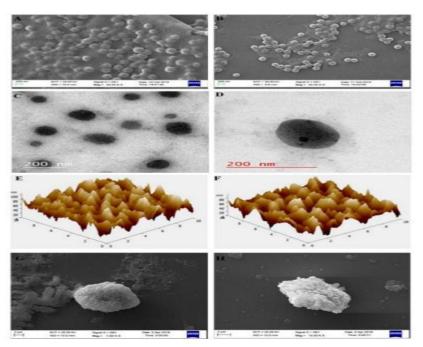


Figure 2. SEM analysis

When compared to targeted NP, non-targeted NP exhibited noticeably less fluorescence, which may have been caused by increased NP uptake via EGFR-mediated endocytosis. Furthermore, the fluorescence of the cells treated with free CM6 was too low in comparison to the formulations.

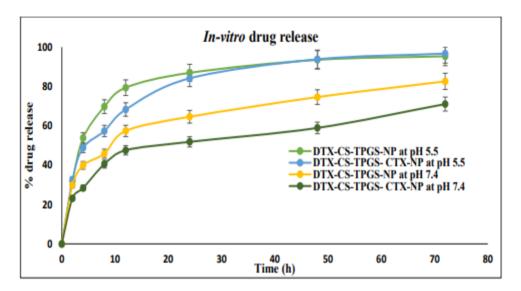


Figure 3: Comparative in-vitro drug release from non-targeted and targeted NP at pH 5.5 and pH 7.4

The results suggest that non-targeted and targeted NP considerably reduced the number of cells and tumour growth when compared to DocelTM. Additionally, all treatments dramatically decreased the number of tumours when compared to the model control. Additionally, targeted NP significantly decreased the amount of cancer cells when compared to non-targeted NP. Not only did non-targeted NP exhibit bioadhesion and the existence of an amorphous drug form embedded in the biodegradable matrix, but they also demonstrated comparable efficacy because of the EPR effect. The Kaplan-Meier endurance study showed a notable extension of the percentage endurance of mice treated with both non-endlessly designated plans when compared to the model control.

5. Conclusion

The concept for the paper came from issues with pharmaceuticals and dosage that were connected to the anti-neoplastic medications that were on the market. Low solubility, quick in vivo degradation, poor pharmacokinetics, undesired biodistribution, and poor permeability across biological barriers are common problems with anti-cancer medications. A second generation taxane called docetaxel is made from European yew tree needles. Additionally, many representations of the updated nano definition were carried out, keeping in mind that reads up for molecule size, polydispersity list, zeta potential, rate ensnaring proficiency, invitro drug release, cellular uptake, cytotoxicity, migration, and apoptosis on A549 cells, invivo pharmacokinetics, histopathology on Wistar rats, and anti-cancer efficacy on albino mice.

Nanotechnology Perceptions Vol. 20 No.S3 (2024)

References

- 1. Fan, Qin, Zhimei He, Jinxin Xiong, and Jie Chao. "Smart drug delivery systems based on DNA nanotechnology." ChemPlusChem 87, no. 3 (2022): e202100548.
- 2. Baveloni, Franciele G., Bruno VF Riccio, Leonardo Delello Di Filippo, Mariza Aires Fernandes, Andréia Bagliotti Meneguin, and Marlus Chorilli. "Nanotechnology-based drug delivery systems as potential for skin application: a review." Current Medicinal Chemistry 28, no. 16 (2021): 3216-3248.
- 3. Ramakrishnan, J., Ravi Sankar, G., & Thavamani, K. (2019). Publication Growth and Research in India on Lung Cancer Literature: A Bibliometric Study. Indian Journal of Information Sources and Services, 9(S1), 44–47.
- 4. Onugwu, Adaeze Linda, Chinekwu Sherridan Nwagwu, Obinna Sabastine Onugwu, Adaeze Chidiebere Echezona, Chinazom Precious Agbo, Stella Amarachi Ihim, Prosper Emeh, Petra Obioma Nnamani, Anthony Amaechi Attama, and Vitaliy V. Khutoryanskiy. "Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases." Journal of Controlled Release 354 (2023): 465-488.
- 5. Alamer, L., Alqahtani, I. M., & Shadadi, E. (2023). Intelligent Health Risk and Disease Prediction Using Optimized Naive Bayes Classifier. Journal of Internet Services and Information Security, 13(1), 01-10.
- 6. Pradhan, Deepak, Prativa Biswasroy, Amit Goyal, Goutam Ghosh, and Goutam Rath. "Recent advancement in nanotechnology-based drug delivery system against viral infections." Aaps Pharmscitech 22 (2021): 1-19.
- 7. Dubey, Sunil Kumar, Shraddha Parab, Vaishnav Pavan Kumarr Achalla, Avinash Narwaria, Swapnil Sharma, B. H. Jaswanth Gowda, and Prashant Kesharwani. "Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts." Journal of Biomaterials Science, Polymer Edition 33, no. 12 (2022): 1531-1554.
- 8. Ramana, R.H.V., & Ravisankar, V. (2024). Precision in Prostate Cancer Diagnosis: A Comprehensive Study on Neural Networks. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 15(2), 109-122. https://doi.org/10.58346/JOWUA.2024.I2.008
- 9. Uvarajan, K. P., and K. Usha. "Implement A System For Crop Selection And Yield Prediction Using Random Forest Algorithm." International Journal of communication and computer Technologies 12.1 (2024): 21-26.
- 10. Da Silva, Patricia Bento, Eduardo Sinésio de Freitas, Jéssica Bernegossi, Maíra Lima Gonçalez, Mariana Rillo Sato, Clarice Queico Fujimura Leite, Fernando Rogério Pavan, and Marlus Chorilli. "Nanotechnology-based drug delivery systems for treatment of tuberculosis—a review." Journal of biomedical nanotechnology 12, no. 2 (2016): 241-260.
- Zheng, Yinghao, Yun Wang, Mengyu Xia, Ya Gao, Lan Zhang, Yanan Song, and Cun Zhang. "The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems." Drug Delivery and Translational Research (2022): 1-20.
- 12. Bobir, A.O., Askariy, M., Otabek, Y.Y., Nodir, R.K., Rakhima, A., Zukhra, Z.Y., Sherzod, A.A. (2024). Utilizing Deep Learning and the Internet of Things to Monitor the Health of Aquatic Ecosystems to Conserve Biodiversity. Natural and Engineering Sciences, 9(1), 72-83.
- 13. Shah, Saurabh, Paras Famta, Deepkumar Bagasariya, Kondasingh Charankumar, Etikala Amulya, Dharmendra Kumar Khatri, Rajeev Singh Raghuvanshi, Shashi Bala Singh, and Saurabh Srivastava. "Nanotechnology based drug delivery systems: Does shape really matter?." International Journal of Pharmaceutics 625 (2022): 122101.
- 14. Sharma, Deepti, Navneet Sharma, Mallika Pathak, Paban K. Agrawala, Mitra Basu, and Himanshu Ojha. "Nanotechnology-based drug delivery systems: challenges and

opportunities." Drug targeting and stimuli sensitive drug delivery systems (2018): 39-79.

Talukdar, Anupam Das, Satyajit Dey Sarker, and Jayanta Kumar Patra, eds. Advances in nanotechnology-based drug delivery systems. Elsevier, 2022.