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Plants and plant-produced vegetables are crucial for every age group due to their rich nutrient 

content, and tomatoes, as one of the leading vegetables, make a significant impact on human well-

being.Tomatoes can easily be affected by environmental conditions and fungal infections, causing 

significant losses for farmers. Experimentation of Quantum machine learning and image processing 

creates stunning results in early disease detection in medical field. This research takes this guidance 

and endeavors to apply various quantum machine learning classification techniques with 

optimization to classify diseased tomato leaves. Quantum Neural Network (QNN), Quantum 

Convolution Neural Network (QCNN), and Quantum-Classical Hybrid Convolution Neural 

Network (QCHCNN) with Quantum Approximate Optimization Algorithm (QAOA), COBOLYA 

(Constrained Optimization by Linear Approximation and  Simultaneous Perturbation Stochastic 

Approximation (SPSA) were experimented for tomato leaf disease detection to identify a timely 

and low-cost model. These classifiers achieved accuracies of 87%, 90%, and 99% respectively. The 

results suggest Quantum-Classical Hybrid Convolution Neural Network (QCHCNN) as the 

preferred choice for tomato leaf disease detection.  

 

Keywords: Quantum Machine Learning, Quantum Neural Network, Quantum Convolution 

Neural Network, Quantum-Classical Hybrid Convolution Neural Network, Tomato Leaf Disease 
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1. Introduction 

Around the world, consumers find tomatoes unavoidable, and simultaneously, the productivity 

of tomatoes is quickly affected by global changes. Hence, farmers need an immediate solution 

to overcome the loss. Recent research experiments show that image processing techniques 

play a major role in disease identification. The concept of quantum and quantum machine 

learning is an evolving area that remains in the experimentation stage. It is challenging to 

definitively determine the benefits of quantum machine learning at this point. 

Quantum computing is a branch of quantum physics and it works based on the concept of 

http://www.nano-ntp.com/
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qubits. Qubits follows the concept of super position principle and these linear complex states 

represented as follows 

|ψ > = ∑ ∝i  
N
i . |ψi > ------1 

The researchers find that it efficiently works for image identification and pattern recognition. 

Typically, image processing handles optimization problems, while quantum machine learning 

utilizes the Quantum Approximate Optimization Algorithm (QAOA), COBOLYA 

(Constrained Optimization by Linear Approximation and   Simultaneous Perturbation 

Stochastic Approximation (SPSA) to address optimization challenges in this research. 

Quantum machine learning excels in feature extraction, demonstrating its ability to capture 

complex features from plant leaf images. The utilization of quantum algorithms enhances the 

precision and effectiveness of feature extraction processes, allowing for a more nuanced 

understanding of intricate patterns associated with plant diseases. 

The inherent ability of quantum machine learning to perform efficient analyses has the 

potential to significantly impact the field of tomato leaf disease detection. Quantum machine 

learning techniques, harnessing the principles of quantum computing, offer the prospect of 

developing highly sensitive and precise detection models. These models can transcend the 

limitations of classical computing methods, These models surpass classical computing, 

enhancing the processing of complex datasets related to subtle patterns and variations in 

tomato leaf diseases. 

The parallelism and superposition properties of quantum computing enable the simultaneous 

exploration of multiple possibilities, allowing for a more comprehensive assessment of the 

features associated with diseased tomato leaves.  

Background :  

By integrating quantum machine learning and image processing principles with the intricacies 

of plant pathology, this research aims to contribute to the creation of efficient tools for the 

timely and accurate detection of diseases impacting tomato crops. The ultimate goal is to 

empower farmers with advanced technologies, mitigating potential losses and ensuring the 

sustainable cultivation of tomatoes for the benefit of both agricultural communities and 

consumers. 

Existing problem: 

Many AI algorithms have been experimented for the classification of tomato leaf diseases, but 

quick analyses have not been adequately documented. 

Proposed Solution: 

The nature of quantum machine learning facilitates quicker results than existing algorithms, 

thereby enabling farmers to promptly control potential losses. 

 

2. Related Work: 

Sri Silpa (2023) et al. This paper suggests that finding the appropriate characteristics' weights 

in both forward and backward propagations is the model's primary goal. Additionally, it 
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expands on the pictures found in the current dataset. By eliminating the final layer from the 

pre-trained GoogleNet model, the suggested method refines it and applies it as a "Feature 

Extraction" model. In order to expedite the process, it additionally adds normalization layers 

to the concealed layers and modified them.[1] 

Sowmiya (2023) et al. Discovered the best course of action for preventing this severe 

agricultural calamity, suggested utilizing a machine learning (ML) model to assess a set of 

images with tomato disease, and resulting in an Improved Quantum Whale Optimization with 

Principle Component Analysis (IQWO-PCA).  The study's dataset came from a readily 

accessible plant village dataset. Following the systematic review's optimization of the hyper-

parameters, the network is created. The transmission learning-based DNN is developed using 

four trained prototypes: DenseNet121, VGG16, Alexnet, and ResNet50. Subsequently, the 

suggested model is assessed by conventional machine learning techniques to ascertain its 

superiority for loss rates and accuracy metrics.[2] 

Shakti (2022) et al. This work uses CNN, InceptionV3, and Resnet 152 V2 deep learning 

models to classify cotton leaves or plants as fresh or sick. These models are used to identify 

unhealthy cotton leaves. The accuracy findings shows the importantce of these approaches can 

be in resolving this problem: 99.057, 97.170, and 98.113 regarding CNN, Resnet 152V2, and 

Inception V3.[4] 

Haya (2023) et al.Presented a method in this research named ARVDC-QIMFODL(Deep 

Learning-Based Quantum Inspired Moth Flame Optimizer) for Automatic Rice Variety 

Identification and Classification. The automated recognition and classification of various types 

of provided rice varieties is the main goal of the ARVDC-QIMFODL technique. The modified 

Wiener filter with median (MMWF) approach is used by the ARVDC-QIMFODL technique 

for the noise removal procedure in order to achieve this. A refined ShuffleNet model then 

performs the feature extraction procedure. The long short-term memory (LSTM) method was 

used to detect and classify rice varieties. Lastly, to maximize the LSTM system's detection 

outcomes, the hyperparameter selection procedure is carried out using the QIMFO method. 

Using a dataset of rice images, the ARVDC-QIMFODL method's simulation results are 

examined.[6] 

Towfek (2023) et al. Researched a deep convolutional neural network, or Deep CNN, to 

suggest a unique method for the identification of plant diseases in their leaves. Photographs of 

the leaves of 39 different plant species are included in this dataset. Image inversion, gamma 

correction, noise injection, principal component analysis (PCA), color enhancement, rotation, 

and scaling were the six data augmentation techniques that were applied. Deduced model's 

accuracy can be increased by including more data. Throughout its development, the suggested 

model was trained with a variety of epochs, batch sizes, and dropout rates. Numerous 

simulations show that the suggested model can classify data with an amazing 83.12% 

accuracy.[7] 

Vikram (2023) et al. Examined the three primary categories of plant illnesses that impact rice. 

Aside from brown spot, bacterial leaf blight, and leaf smut are the other three diseases that can 

infect rice plants. The suggested method uses a Faster R-CNN deep architecture in conjunction 

with VGG-16 transfer learning to extract features. The random forest method is used to 

categorize the collected attributes after the transfer learning step is finished. The radish field 

https://ieeexplore.ieee.org/author/37060993500
https://ieeexplore.ieee.org/author/37089506548
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was split into three different sections by the random forest classifier. The UCI Machine 

Learning Repository is where the pictures of rice plant leaves were obtained. With regard to 

rice disease imaging class prediction, the suggested method achieves an average prediction 

accuracy of 97.3%.[8] 

Sundas (2023) et al. Aimed to provide an image processing and performance testing-based 

diagnostic system for paddy disease detection. The system has employed and it was created in 

C++ and tested with a dataset of photos of infected leaves. The dataset includes the several 

types of spotted leaves brought on by paddy disease. The four main functions of the system 

are image acquisition, pre-processing, feature extraction, and performance measurement. Each 

of these phases carries out a certain assignment. Furthermore, the study offers a conclusive 

account of the paddy disease.[9] 

Beulah (2022) et al. Presented an adaptable extreme learning machine (AELT) for disease 

classification. To increase the accuracy of disease detection, segmentation and feature 

extraction are done prior to classification. For segmentation, a probability-induced butterfly 

optimization technique combined with multilevel thresholding-based K-means clustering is 

described. Plant photos are used to extract the entropy-based properties. The AELT classifier 

receives the characteristics. The outcomes are assessed using the industry standard dataset and 

contrasted using cutting edge methods.[10] 

Sergey (2023) et al. Reviewed the techniques based on Raman scattering, LiDAR technology, 

and the scattering and absorption of light in the UV, Vis, IR, and terahertz ranges. The use of 

optical techniques to several pathogen categories, all plant sections, and different data 

collection scenarios is taken into consideration. The review highlights the variety, successes, 

development trends, and future promise of contemporary optical approaches for the 

identification of contagious plant illnesses.[11] 

Mbulelo (2023) et al. This study's objective was to evaluate plant disease detection models, 

namely those developed during the last 20 years, in order to determine the current state of the 

field's research and to pinpoint areas that could use more investigation. The study found that 

the real-time monitoring of disease start signals before they spread throughout the entire plant 

has not received much attention in the literature. Once a disease was diagnosed, there was also 

a marked decrease in the attention given to real-time mitigation strategies such actuation 

operations, fertilizer and pesticide spraying, etc. The integration of monitoring and 

phenotyping functions into a single model that can perform several tasks has received very 

little attention in research. As a result, the study identified a few areas that warrant additional 

attention.[12] 

Matanel (2023) et al. Presented the paper on machine learning-based image analysis made it 

possible to classify infected and uninfected leaves in inoculated plants objectively and to 

systematically identify and quantify spots. By comparing redox and chlorophyll fluorescence 

imaging, it was possible to observe that infected leaf areas with mislocalized chl-roGFP2 also 

exhibited higher quantum PSII yield (ΦPSII) and reduced non-photochemical quenching when 

compared to the surrounding leaf areas. The results indicate that mislocalization of proteins 

targeted to chloroplasts is a useful indicator of late blight infection and show how whole-plant 

redox imaging may be used to monitor the disease's biotrophic stage in a non-destructive 

manner.[13] 

https://sciprofiles.com/profile/136200?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name
https://onlinelibrary.wiley.com/authored-by/Hipsch/Matanel
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Gurunathan (2023) et al. Proposed image processing for the identification of leaf disease based 

on the KNN Classifier. Preprocessing images, contrast enhancement, RGB conversion, feature 

extraction, segmentation, and K-nearest neighbor classification are steps in the process of 

diagnosing an illness. Histogram Equalization is first applied to the leaf samples after they 

have been image-preprocessed and resized to 256x256 pixels in order to enhance the quality 

of the splint samples. The splint samples' instructional features are rated using a matrix known 

as the Grey Level Co-occurrence Matrix. The features are grouped using machine learning 

methods similar to K-Nearest Neighbor (K-NN). The quality of the suggested model is 

assessed using K-NN.[14] 

Mridul (2023) et al. Described a straightforward technique for identifying biotic and abiotic 

stress in plants. The degree of stress that plants experience is determined by how much more 

nutrients they take in as a form of self-defense. Since agarose is the growing medium for Cicer 

arietinum (chickpea) seeds, the rate of change of nutrients in the media was estimated using a 

continuous electrical resistance measurement. Drude's model was applied to ascertain the 

charge carrier concentration in the growth medium. In two tests, outliers in electrical resistance 

and relative variations in carrier concentration were discovered, which helped identify 

abnormalities and predict plant stress.[15] 

Jiao (2023) et al. The study used a number of characterisation approaches. The resulting carbon 

quantum dots featured high-resolution lattice stripes with lattice spacings ranging from 0.20 

to 0.23 nm, together with a quasi-spherical shape. Additionally, they had elemental O, C, and 

N on the surface as well as functional groups like amino and hydroxyl groups that had strong 

hydrophilic qualities. The fluorescence quantum yield of carbon quantum dots is a critical 

factor in determining their photoluminescence capabilities. Therefore, six machine learning 

analytical models based on 480 samples were used to study the link between the fluorescence 

quantum yield and biochar preparation parameters.[16] 

Adarsh (2023) et al. Reviewed the latest developments in quantum UAV-based networks and 

quantum satellites. In this article, the significance of cutting-edge technologies is examined 

from a network viewpoint, including quantum artificial intelligence, blockchain, quantum 

machine learning, quantum satellites, and quantum unmanned aerial vehicles. This work also 

covered the function of artificial intelligence and satellite-based imagery.  The most successful 

quantum networks produced to date have been based on fiber communication lines and 

satellite-to-ground links. Free-space quantum communication is more efficient when it uses a 

UAV, satellite, or both since it eliminates the lower loss limit of space and the requirement for 

continuous ground connections.[17]  

Priynka (2023) et al. In this experiment, they used images taken camera bias in situ utilizing a 

deep literacy frame to classify wheat conditions with colorful assessments. In our sample, there 

are four orders of wheat complaints: normal, heroic, powderly, and stem rust.There were 207 

pictures in every order. Convolutional neural network training was used to develop our 

classifier (CNN). One of CNN's biggest advantages is its ability to recycle the raw photos 

directly and automatically reward features. Farmers can utilize the model, which reached a 

delicacy of 94.54, to protect wheat crops from conditions in which they are covered by 

forests.[18] 

Zhiyong (2023) et al. Suggested SE-VRNet integrated a module for squeeze and excitation 

https://ieeexplore.ieee.org/author/37089639910
https://www.nature.com/articles/s41598-023-35285-3#auth-Mridul-Kumar-Aff1
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(SE) with an attention mechanism together with a deep variation residual network (VRNet) to 

address the challenge of feature extraction provided by the leaf disease's dispersed location. 

99.73% and 99.98%, respectively, are the accuracy of the top-1 and top-3 achieved by the SE-

VRNet model on NewData, while 95.71% and 99.89%, respectively, are the accuracy of the 

top-1 and top-3 acquired by the model on SelfData. In comparison to other cutting-edge 

techniques, the experimental findings on the PlantVillage, OriData, NewData, and SelfData 

datasets showed the efficacy and viability of the suggested SE-VRNet in identifying leaf 

diseases using mobile gadgets.[19]  

Dennis (2023) et al. Solved a number of industrial use-cases involving different machine 

learning issue categories by benchmarking their most crucial characteristics; and incorporate 

Quantum Machine Learning (QML) algorithms into this automated solving approach of the 

AutoML framing, this work describes the selection approach and analysis of existing AutoML 

frameworks. In order to do that, a market overview using the open-source technologies that 

are currently accessible is created, and appropriate frameworks are methodically chosen using 

a multi-phase, multi-criteria approach. This is accomplished by taking into account methods 

for software selection as well as AutoML's technological viewpoint. Regarding their software 

and machine learning attributes, the requirements for the framework selection are separated 

into hard and soft criteria.[20]  

Lauren (2023) et al. Presented a decadal of suggestions from a symposium on artificial 

intelligence, machine learning, and modeling applications that address these space biology 

concerns and were arranged by the National Aeronautics and Space Administration. In the 

end, artificial intelligence will help life to flourish in deep space by advancing our biological 

understanding of the effects of spaceflight, facilitating predictive modeling and analytics, 

supporting fully automated and repeatable experiments, and effectively managing spaceborne 

data and metadata.[21] 

Ankita (2023) et al. This research's workflow is predicated on a number of predictions 

regarding the application of pre-processing techniques, wheat canopy segmentation 

techniques, and the potential adaptability of current models from previous studies to categorize 

water stress in wheat crops. Therefore, it was shown that the most beneficial pre-processing 

procedures were min-max contrast stretching and total variation with L1 data fidelity term 

(TV-L1) denoising using a Primal-Dual algorithm in order to build an automation model for 

water stress detection.  The random forest approach is best suited for building water stress 

detection models and has the highest global diagnostic accuracy (91.164%).[22] 

Rhea (2023) et al. Focussed on the developments in detection approaches, particularly the 

smaller systems that have emerged in the past ten years. There are two categories of analytical 

approaches for detecting plant pathogens: direct detection and indirect detection. It has been 

addressed how direct methods, which use laboratory techniques like polymerase chain 

reaction, enzyme-linked immune-sorbent assays, and immunofluorescence, have advanced 

recently. Likewise, a classification and assessment process has been applied to indirect 

approaches of plant disease detection that depend on the detection of plant stress indicators. 

For on-field plant disease detection, a number of high sensitivity and selectivity detection 

systems have been developed and commercialized in the last ten years into handheld devices 

and solutions.[23] 
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Shankey (2023) et al. Presented a lightweight transfer learning model with limited sample 

sizes to classify plant diseases. By using sparse labeled data for training, few-shot 

classification seeks to discover previously undiscovered classes. In order to effectively classify 

plant diseases using minimal data, the suggested study uses an aggregated loss function that is 

created by combining triplet loss and cross-entropy loss with MobileNetV2 as the basic model. 

The suggested work was evaluated using two freely available datasets: PlantVillage, which 

contains 54,303 leaf samples, and Plantdoc, which has 2598 leaf samples. For the plantdoc 

dataset, two domain splits were taken into consideration; using 30 samples, the accuracy was 

approximately 81%.[24] 

Jayapriya (2023) et al. Proposed a  maize illnesses based on optimization, this paper uses 

Improved Gaussian Conducted Particle Swarm Optimization [IGCPSO] to optimize 

convolution neural networks. Initially, a deep learning architecture called Contrast Limited 

Adaptive Histogram Equalization [CLAHE] is used to divide a given image into specific, non-

overlapping segments of comparable sizes. Graph cut segmentation is used to divide a 

preprocessed image into many segments. In order to obtain the discriminative features for the 

remaining processes, segmented disease areas are useful. The performance of the suggested 

model is enhanced in terms of dice coefficient, sensitivity, and specificity for disease 

identification through research using experiments utilizing the plant village dataset.[25] 

Sidrah (2023) et al. Suggested a deep model built on CNN. There are thirty-three layers in the 

suggested model. For the purpose of early leaf blight detection, employed a guava dataset that 

has two classes. At first, leaf blight detection involved preprocessing using the YCbCr color 

scheme. Due to the modest size of the initial dataset, data augmentation was done. For feature 

acquisition, DarkNet-53, AlexNet, and the suggested SidNet were employed. To achieve the 

ideal outcomes, the attributes were combined. For feature selection, Binary Gray Wolf 

Optimization (BGWO) was used to the fused features. The KNN and SVM classifier variations 

were trained with the optimum features for classification. The studies were run using cross 

validation on five and ten folds. The maximum results that could be obtained were 98.9% with 

a 5-fold.[26] 

Süleyman (2023) et al. Researched a deep learning techniques were used to classify illnesses 

in sugarcane leaves. Five classes—healthy, mosaic disease, redrot disease, rust disease, and 

yellow leaf disease—across a total of 2521 photos make up the dataset we use. This dataset is 

first subjected to the convolutional neural network (CNN) model DenseNet121, then to the 

Vision Transformers (ViT) model, and lastly to the ViT + CNN combination. The outcomes 

are then compared. Following the observations, it is believed that the corresponding precisions 

of 92.87%, 93.34%, and 87.37% were attained.[27] 

Nattanong (2023) et al. Aimed  to create an integrated computational framework based on 

TYLCV sequences (isolated in Korea) for the precise detection of symptoms (mild or severe). 

In order to create the framework, 11 distinct feature encodings and hybrid features out of the 

training set. Next, investigated 8 different classifiers and used randomized 10-fold cross-

validation to create the corresponding prediction models for each classifier. The top 90 models 

were then chosen after a thorough evaluation of these 96 created models, in which the 

projected class labels were pooled and treated as reduced features.[28] 

Peng (2023) et al. Resulted the  two machine learning algorithm models—the random forest 
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(RF) model and the light gradient boosting machine (LightGBM) model—performed better 

than the other in inverting the Pn of function-leaves in cotton and the FAPAR of the cotton 

canopy, respectively. These models were based on six different forms of hyperspectral 

transformations. on order to diagnosis nitrogen nutrition and cotton growth state on big farms, 

these studies offer sophisticated metrics for the non-destructive tracking of cotton nitrogen 

status.[29] 

Shrikrishna (2021) et al. Overviewed a imaging methods and their uses in plant phenotyping 

is given in this work. An extensive overview of current machine vision techniques for 

classifying and estimating plant traits is provided in this work. Information regarding publicly 

accessible datasets is included in this research to enable consistent comparisons between the 

most advanced phenotyping techniques. Additionally, this study outlines future objectives for 

research on the application of deep learning-based machine vision algorithms for plant 

classification investigations, physiological and temporal trait assessment, and structural (2-D 

and 3-D) studies.[30] 

Pappu (2023) et al. Investigated the convolution neural network (CNN)-based deep learning, 

in conjunction with classical machine learning (ML) based computer vision algorithms, can 

effectively classify "Furr" mandarin leaves with canker and four other conditions, and 

"Valencia" orange fruit surfaces with CBS infection along with four other conditions. Using a 

bespoke shallow CNN with SoftMax and RBF SVM, fruits with CBS and the other four criteria 

(marketable, greasy patch, melanose, and wind scar) were categorized with an overall accuracy 

of 89.8% and 92.1%, respectively. Similarly, canker leaves could be classified with an F1-

score of 85% and an overall accuracy of 82%, incorporating four additional criteria, using a 

modified VGG16 network with SoftMax.[31]  

Douaa (2023) et al. Researched a diagnoses of rice diseases are made using a hybrid model 

that combines a support vector machine (SVM) with a deep convolutional neural network 

(CNN) called Residual Network 50 (ResNet50).  The deep learning model ResNet50, which 

excels in image classification tasks, was utilized to extract characteristics from rice plant 

photos. Based on these attributes, SVM was then used to classify the disorders. Complex 

patterns in the images could be detected by the ResNet50, and the SVM could then use these 

patterns to determine the categorization of the images with accuracy. With an accuracy of 

almost 99%, our hybrid model enabled for high precision in diagnosis of rice illness.[32] 

Sofia (2023) et al. Focussed on agriculture 5.0 and the primary attributes and technological 

advancements will be used in the highly anticipated 6G-IoT communication systems are first 

covered in the article. After that, emphasized the significance and impact of these emerging 

technologies on the continued development of smart agriculture, and  wrapped up with a look 

at the potential and difficulties that lie ahead.  Based on the expanding 5G network 

infrastructure, agriculture 5.0 can take advantage of it. But as the pertinent scientific literature 

and study indicate, only 6G-IoT networks will be able to provide the technological 

advancements that would allow the complete implementation of Agriculture 5.0.[33] 

Sreeraman (2023) et al. Explored the idea of DL structures and its uses in medication creation 

and diagnostics. The following sections of the article concentrate on current advancements of 

DL-based techniques in biology, particularly in structure prediction, cancer medication 

development, COVID infection diagnostics, and drug repurposing strategies, even if these 
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approaches have applicability in many other domains. A number of state-of-the-art, recently 

developed DL-based approaches are summarized in each review area. Additionally, presented 

the methods used by them, which prediction accuracy is comparable to that of the most 

advanced computer models. Wrapped up the overview by talking about the advantages and 

disadvantages of DL approaches and laying out the future directions for gathering data and 

creating effective computational models.[34] 

Musa (2023) et al. Proposed to identify the disease known as leaf blight by dividing leaves 

entering three categories: healthy, early, and late blight. There are two phases to this work: 

division and categorization. To segment, MobileNetV2 is employed, for classification, QCNN 

is used, a forthcoming quantum machine learning method.The primary goal is to supply and 

recommend a rapid, efficient, automated method for classifying additionally diagnosing blight 

illness, therefore facilitating growers ability to detect the illness. The suggested model had a 

0.969 classification accuracy. The outcomes were further confirmed by comparison with more 

recent research in the sector. The results indicate that the model performs exceptionally 

well.[35] 

 

3. Methodology 

The research methodology, illustrated in Fig. 1, delineates the essential steps undertaken in the 

study's execution. The utilization of quantum machine learning for classification integrates 

optimization techniques, including the Quantum Approximate Optimization Algorithm 

(QAOA), Constrained Optimization by Linear Approximations (COBYLA), and 

Simultaneous Perturbation Stochastic Approximation (SPSA). These optimization strategies 

effectively diminish the dimensionality of the feature space while augmenting feature 

representation. The intricate patterns within the feature space are revealed through diverse 

feature maps such as the Z feature map and ZZ feature map with ansatz. The refined dataset 

undergoes additional processing with fine-tuned models, including the Quantum Neural 

Network (QNN), Quantum Convolutional Neural Network (QCNN), and Quantum-Classical 

Hybrid Convolutional Neural Network (QCHCNN). Comprehensive evaluations are 

conducted using metrics such as accuracy, precision, recall, F1 score, and AUC, with log loss 

serving as the chosen cost function. Ultimately, the selection of the proposed model is based 

on its superior performance in disease detection. 

 

4. Dataset  

About a thousand examples of both healthy and unhealthy images can be found on Kaggle, 

where the image under test was found . The resolution of the images is 256 × 256.  
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Fig 1: Proposed Methodology 

Feature maps :  

It acts as the fundamental structure for classification within the realm of quantum machine 

learning, facilitating the conversion of supplied data into a quantum feature space. The feature 

map plays a pivotal role in quantum circuits, crafted to encode classical data into quantum 

states, with the experiment utilizing the Z feature map and ZZ feature map. This process 

facilitates the recognition of intricate patterns in classification 

.  ɸ ∶ Rd  → H,where:  
x
→   

ɸ (
x
→)   

→     |ɸ (
x
→)   >< ɸ (

x
→)|   for quantum cases, it’s a  feature 

map transformation. 

  
x
→ : Classical features 

|ɸ (
x
→)   >< ɸ (

x
→)|  : Quantum state vector 

Optimization: 

It helps to improve the accuracy of the model and the Optimizers COBOLYA (Constrained 
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Optimization by Linear Approximation, Simultaneous Perturbation Stochastic Approximation 

(SPSA) and  Quantum Approximate Optimization Algorithm (QAOA) which works on noisy 

problems in dataset and  log loss function is used for this experiment.  

Quantum Neural Network (QNN) 

Quantum circuits integrate classical neural network features to construct quantum neural 

networks, contributing to the field of quantum machine learning. The resulting output, either 

+1 or -1, mimics the functionality of classical neural networks in unveiling hidden patterns 

within data, facilitated by the Qiskit machine learning library. The training process commences 

with data loading through Feature Maps, followed by the employment of a quantum neural 

network with Ansatz. To optimize classification accuracy, parameters within the quantum 

neural network circuit are fine-tuned using optimization algorithms like COBYLA, SPSA, 

QAOA, while minimizing the specified log loss. The schematic representation of this process 

can be simplified as follows 

                                          

Fig 2. General methodology of QNN, QCNN, QCHCNN 

Quantum Convolution Neural Network (QCNN)  

QCNNs process image data by utilizing quantum circuits. Similar to classical CNNs, 

convolutions, pooling, and other operations are carried out using quantum gates and 

operations. The purpose of quantum circuits is to take advantage of entanglement and quantum 

parallelism, which may be advantageous for some computational tasks. Prior to processing, 

image data must be quantum-state encoded. 

Quantum convolutional layers, which apply convolutional operations to the quantum-encoded 

image, are a feature of QCNNs. Quantum gates and operations unique to convolutional tasks 

make up these layers. 

Similar to the classical pooling layers in CNNs, quantum pooling operations are used for 

downsampling. The spatial dimensions of the quantum feature maps are lowered in part by 

these operations. It could function alongside traditional neural networks. The advantages of 

quantum and classical computing are combined in hybrid quantum-classical models. While 

QCNNs handle particular quantum tasks, classical neural networks may be employed for 

specific processing stages. Model training is aided by optimization algorithms, and quantum 

backpropagation is used to modify the quantum circuit's parameters in order to minimize a 

specified cost function. 
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Quantum-Classical Hybrid Convolution Neural Network (QCHCNN) 

The input image data is preprocessed and encoded into a quantum state. Quantum 

convolutional layers perform convolution operations on the quantum-encoded image. These 

layers consist of quantum gates and operations specifically designed for image processing 

tasks. The convolutional operations aim to capture hierarchical features in the input image. 

Quantum pooling operations are employed for down-sampling the quantum feature maps. 

These operations reduce the spatial dimensions of the quantum data while preserving 

important features. 

The quantum processed data is transformed back to classical data. This transformation can 

involve measurements on the quantum states to obtain classical information. 

Classical neural network layers are integrated into the architecture. These layers process the 

classical data obtained from the quantum processing stages. 

Classical layers include fully connected layers, activation functions, and other components 

commonly found in classical neural networks. Optimization algorithms involves adjusting the 

parameters of the quantum operations to minimize a defined cost function. 

Evaluation Metrics: 

Accuracy evaluates the overall equilibrium of the model, computed as the proportion of 

accurate predictions to the total number of predictions. 

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegativ + FalsePositive + FalseNegative
 

Precision strives to minimize the occurrence of false positives, calculated as the division of 

true positives by the sum of true positives and false positives. 

Precision = 
True Positive

True Positive + False Positive
 

Recall seeks to mitigate false negatives and is computed as the proportion of true positives to 

the sum of true positives and false negatives. 

Recall = 
True Positive

True Positive + False Positive
 *100  

The F1 Score aims to achieve a balance between minimizing false positives and false 

negatives. It is determined as the harmonic mean of precision and recall, offering a holistic 

assessment. 

F1 Score = 2 ∗
Precision ∗ Recall

Precision + Recall
   

 

5. Result and Discussion 

In the domain of tomato leaf disease detection, Quantum Machine Learning (QML) techniques 

were employed, leveraging classifiers such as Quantum Neural Network (QNN), Quantum 

Convolutional Neural Network (QCNN), and Quantum Convolutional Hybrid Neural Network 

(QCHCNN). The implementation and testing of these algorithms were carried out using 
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Python in the Google Colab environment, with the support of Qiskit and Cirq. 

The accuracy of the experimented algorithms was visualized for 15 epochs, employing various 

feature maps including ZZFeaturemap and ZFeaturemap, and Ansatz types such as 

EfficientSU2 and RealAmplitudes. The optimization process utilized COBYLA, QAQO, and 

SPSA optimizers. The parameter outcomes demonstrating effective performance are 

showcased in the subsequent table. 

Table 1. Classifier Accuracy 
  

FeatureMaps 

 

Ansatz 

 

Classifiers 

QNN QCNN QCHCNN 

Train Test Train Test Train Test 

 

 

 

ZZFeaturemap 

 

EfficientSU2 

COBYLA 0.87 0.87 0.90 0.89 0.97 0.97 

QAQO 0.87 0.87 0.91 0.90 0.99 0.99 

SPSA 0.87 0.86 0.89 0.88 0.97 0.96 

 

RealAmplitudes 

COBYLA 0.86 0.85 0.89 0.88 0.96 0.95 

QAQO 0.87 0.85 0.90 0.89 0.97 0.96 

SPSA 0.86 0.84 0.88 0.87 0.96 0.94 

 

 

ZFeaturemap 

 

EfficientSU2 

COBYLA 0.86 0.85 0.89 0.88 0.96 0.95 

QAQO 0.85 0.85 0.90 0.89 0.97 0.96 

SPSA 0.86 0.84 0.88 0.87 0.96 0.95 

 

RealAmplitudes 

COBYLA 0.85 0.84 0.88 0.87 0.95 0.95 

QAQO 0.86 0.85 0.89 0.88 0.96 0.95 

SPSA 0.87 0.86 0.87 0.86 0.97 0.95 

  

Fig.3. classifiers accuracy 

Following figures shows the train and test performance of each algorithm 

0.75

0.8

0.85

0.9

0.95

1

1.05

QNN Train QNN Test QCNN Train

QCNN Test QCHCNN Train QCHCNN Test
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Fig.4 (a). Train & test performance of QNN 

                             

Fig.4 (b). Train & test performance of QCNN 
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Fig.4 (C). Train & test performance of QCHCNN 

The chart utilizes the y-axis to represent performance metrics and the x-axis to depict various 

algorithms. 

The table provided below presents detailed results obtained for epochs 5, 10, and 15. In this 

analysis, ZZFeaturemap is employed as the designated feature map, while EfficientSU2 is 

selected as the Ansatz. Furthermore, the optimization process involves the use of three distinct 

optimizers: COBYLA, QAQO, and SPSA. These outcomes and setups provide valuable 

insights into the performance and behavior of the quantum algorithm under examination across 

diverse epochs and with various combinations of feature maps and optimizers. 

Table 2. Classifier performance at epoch 5, 10, 15 for COBYLA 
Feature map : ZZFeaturemap Ansatz : EfficientSU2 and Optimizer COBYLA 

 

Algorithms Accuracy Precision Recall F1Score 

Train Test Train Test Train Test Train Test 

Epoch 5 

QNN 0.83 0.82 0.19 0.54 0.21 0.59 0.26 0.44 

QCNN 0.86 0.84 0.22 0.63 0.23 0.54 0.20 0.56 

QCHCNN 0.90 0.89 0.17 0.49 0.33 0.38 0.70 0.60 

Epoch 10 

QNN 0.85 0.84 0.23 0.61 0.37 0.49 0.45 0.54 

QCNN 0.88 0.87 0.34 0.70 0.54 0.67 0.32 0.65 

QCHCNN 0.94 0.93 0.41 0.65 0.62 0.78 0.77 0.80 

Epoch 15 

QNN 0.87 0.87 0.21 0.34 0.31 0.29 0.26 0.44 

QCNN 0.90 0.89 0.26 0.53 0.27 0.34 0.20 0.56 

QCHCNN 0.97 0.97 0.10 0.39 0.56 0.77 0.78 0.84 

 

 

 

0.91

0.92
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0.94

0.95

0.96
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1
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Table 3. Classifier performance at epoch 5, 10, 15 for QAQO 
Feature map : ZZFeaturemap Ansatz : EfficientSU2 and Optimizer QAQO 

 

Algorithms Accuracy Precision Recall F1Score 

Train Test Train Test Train Test Train Test 

Epoch 5 

QNN 0.84 0.85 0.10 0.24 0.32 0.49 0.35 0.34 

QCNN 0.88 0.87 0.21 0.33 0.24 0.44 0.24 0.36 

QCHCNN 0.91 0.90 0.25 0.29 0.30 0.29 0.50 0.70 

Epoch 10 

QNN 0.87 0.86 0.23 0.21 0.17 0.39 0.25 0.31 

QCNN 0.89 0.88 0.27 0.50 0.44 0.57 0.30 0.45 

QCHCNN 0.96 0.95 0.31 0.45 0.52 0.68 0.66 0.70 

Epoch 15 

QNN 0.87 0.87 0.22 0.45 0.19 0.30 0.26 0.44 

QCNN 0.91 0.90 0.24 0.36 0.27 0.45 0.66 0.56 

QCHCNN 0.99 0.99 0.30 0.41 0.37 0.70 0.77 0.84 

Table 4. Classifier performance at epoch 5, 10, 15 for SPSA 
Feature map : ZZFeaturemap Ansatz : EfficientSU2 and Optimizer SPSA 

 

Algorithms Accuracy Precision Recall F1Score 

Train Test Train Test Train Test Train Test 

Epoch 5 

QNN 0.85 0.84 0.15 0.26 0.34 0.52 0.35 0.34 

QCNN 0.87 0.86 0.23 0.35 0.24 0.47 0.23 0.34 

QCHCNN 0.90 0.89 0.27 0.31 0.32 0.31 0.50 0.70 

Epoch 10 

QNN 0.86 0.85 0.23 0.21 0.23 0.36 0.25 0.31 

QCNN 0.88 0.88 0.27 0.36 0.41 0.55 0.29 0.35 

QCHCNN 0.95 0.94 0.32 0.43 0.43 0.54 0.56 0.60 

Epoch 15 

QNN 0.87 0.86 0.23 0.41 0.17 0.28 0.24 0.32 

QCNN 0.89 0.88 0.21 0.34 0.27 0.41 0.47 0.56 

QCHCNN 0.97 0.96 0.28 0.39 0.35 0.50 0.68 0.76 

Analyzing the table above reveals that the highest accuracy was attained under specific 

conditions. Specifically, at epoch 15, utilizing the QAQO optimizer, and employing the 

QCHCNN configuration yielded the most favorable outcome. This observation provides 

valuable insights into the optimal settings for achieving superior accuracy in the context of the 

presented experiment. 

The following figure illustrates the accuracy and loss of QCHCNN over a few epochs 
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Fig.5.(a).Accuracy& Loss 

The following figure shows the accuracy and loss values for QCHCNN and QAQO over 

epochs 

 

Fig.6.Accuracy & Loss value for QAQO optimization with QCHCNN 

From the presented results, it is evident that QAQO optimization with QCHCNN achieves 

high accuracy and minimal loss. 

 

6. Conclusion 

The quantum nature of these algorithms can potentially address optimization challenges in 

parameter tuning, leading to improved adaptability and performance. Quantum machine 

learning's ability to handle large datasets and optimize complex models positions it as a 

promising tool for advancing the efficiency and effectiveness of tomato leaf disease detection. 

While practical implementations of quantum machine learning in agriculture, specifically in 

tomato leaf disease detection, are still in the early stages of exploration, the ongoing 

advancements in quantum computing technologies hold the promise of transforming the 

landscape of crop health monitoring.As scientists persist in exploring and crafting quantum 

algorithms specifically designed for agricultural contexts, the incorporation of quantum 

machine learning into disease detection systems could prove instrumental in alleviating losses 

and safeguarding the overall well-being and productivity of tomato crops. 
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Quantum computing's inherent ability to process large datasets in parallel may facilitate the 

efficient analysis of extensive datasets of plant leaf images. This can lead to more robust and 

scalable disease detection models. pattern recognition could contribute to the development of 

highly sensitive and precise detection models. This model attains an accuracy of 87% for 

Quantum Neural Network (QNN), 90% for Quantum Convolutional Neural Network (QCNN), 

and an impressive 99% for Quantum Convolution Hybrid Convolution Neural Network 

(QCHCNN). The observations suggest that the QCHCNN demonstrates superior performance, 

making it a suitable classification model for the detection of Tomato leaf diseases. 

Future Enhancement 

Quantum machine learning, as a dynamic and evolving field, represents a frontier of 

exploration in this research. The current investigation, while employing a select set of 

techniques, paves the way for a broader spectrum of experimentation in disease detection 

through quantum methodologies. This research thus acts as a catalyst, encouraging scholars to 

embark on a scholarly journey to unravel the untapped capabilities inherent in the realm of 

quantum machine learning. 
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