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This research introduces a novel approach for the accurate and efficient extraction of COVID-19 

symptoms from ultrasound images, specifically targeting the lungs and throat regions. By 

employing the Conditional Random Field Deep Learning (CRF-DL) algorithm is achieved superior 

feature extraction capabilities. Post extraction, a Natural Language Processing (NLP) model is 

utilized to generate a comprehensive medical report. Comparative analysis with conventional 

methods, such as Variational Autoencoders (VAE’s) and Transfer Learning models (DenseNet, 

Faster R-CNN, YOLO), revealed our method's enhanced processing speed and accuracy. 

Importantly, we have encapsulated our algorithm within a mobile application, ensuring widespread 

accessibility and rapid, accurate report generation.  
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1. Introduction 

Medical imaging has undergone revolutionary shifts in an era of rapid technological 

advancement, improving the ability to detect, diagnose, and monitor diseases more accurately. 

Traditional techniques, while necessary, frequently rely heavily on medical professionals' 

expertise to interpret nuanced details. This can be time-consuming and occasionally prone to 

human error. The emerging field of medical image analysis using artificial intelligence, 

particularly deep learning, offers a promising path forward in overcoming these challenges 

[1]. COVID-19, a global pandemic caused by the novel SARS-CoV-2 virus, has had a 

significant impact on global healthcare systems. Controlling the spread of the disease and 

providing prompt patient care remains critical [2]. Lung ultrasound (LUS) has gained 

popularity as a viable imaging technique, particularly in areas where more traditional methods 

such as CT scans are not readily available. However, interpreting LUS images is subjective 

and requires specialized knowledge [3]. 

Using deep learning techniques, this study aims to bridge the gap between traditional LUS 

image interpretation and automated, precise detection of COVID-19 symptoms [4]. This work 

aims to create a model that can not only detect anomalies in ultrasound images but also provide 

quantifiable metrics for diagnosis by leveraging the strengths of Conditional Random Field 
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functions combined with Deep Learning [5]. 

This study hopes to provide a tool that assists medical professionals in diagnosing COVID-19 

more efficiently and accurately, ultimately contributing to better patient outcomes and more 

informed clinical decisions by combining deep learning and medical imaging [6, 7]. 

 

2. Background 

In December 2019, a groundbreaking discovery emanated from Wuhan, the capital of China's 

Hubei province [8]. A local doctor identified the first case of the novel coronavirus illness, 

now widely known as COVID-19 [9]. As the world grappled with its rapid spread, the lack of 

an approved vaccine made prevention more challenging [10]. Crowded settings exacerbated 

the spread, emphasizing the significance of travel bans and stringent hygiene practices like 

regular handwashing [11]. 

Symptomatically, COVID-19 is known to present primarily with fever and cough, with some 

patients experiencing additional symptoms like a sore throat, chest tightness, and sputum 

production [12]. Notably, the disease has a mortality risk of around 5.8%, drawing grim 

parallels with the 1918 Spanish flu pandemic which had a comparable fatality rate [13-15]. 

Lung ultrasound (LUS) emerged as an instrumental tool in the diagnosis and monitoring of the 

disease [16]. LUS, a diagnostic procedure that utilizes high-frequency sound waves to generate 

internal body images, offers distinct advantages, especially when traditional imaging methods 

like CT scans are less accessible [17]. Notably, the "bed-side lung ultrasound in emergency" 

(BLUE) protocol demonstrates the efficacy of pulmonary ultrasonography in diagnosing acute 

respiratory failure [18-20]. However, current diagnostic methods, like the RNA reverse 

transcriptase polymerase chain reaction (RT- CR) from oropharyngeal swabs, sometimes yield 

results only after a 48-hour window, leading to unnecessary patient isolation and thereby 

overburdening healthcare facilities [21]. 

Advancements in medical imaging have shown the specific ultrasonographic features of 

COVID-19 [22]. However, inherent noise in ultrasound imaging poses challenges [23-25]. 

Over the decades, several algorithms targeting noise reduction in these images have been 

proposed. Recent innovations, especially those leveraging artificial intelligence and deep 

learning, have made significant strides in enhancing the clarity of ultrasound images [26-29]. 

In parallel, there's been a surge in research exploring the interplay between machine learning, 

deep learning, and medical imaging, with platforms like ResearchGate documenting over 100 

related articles [30-32]. Various machine learning algorithms, including celebrated deep 

learning models like ResNet [33] and VGG Net [34], have been developed, yielding accuracy 

rates between 90-98% in COVID-19 detection [35]. 

Furthermore, natural language processing, integrating machine translation and deep learning, 

holds promise in high-dimensional data interpretation [36]. With the world witnessing one of 

the most widespread diseases of the 21st century, employing these advanced computational 

techniques promises not only accurate detection but also expedited results [37]. 

This technological growth, there remains a need to better understand COVID-19's effects on 

internal organs. While diagnosis is paramount, equally pressing is gauging the appropriateness 
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of medical treatments [38]. This research not only delves into using ultrasound imaging for 

detecting COVID-19 but also emphasizes the conditional random algorithm's potential in 

refining image quality, ultimately aiming for improved accuracy in disease detection and 

patient care [39, 40]. 

 

3. Materials and Methodology 

3.1 Overview 

Figure 1 shows the operational flow of Covid19 detection using ultrasound images. The CRF-

DL algorithm's core output function combines the representational prowess of Deep Learning 

(DL) with the structured predictive capabilities of Conditional Random Fields (CRFs). In 

essence, while Deep Learning (DL) models such as Long Short-Term Memory networks 

(LSTMs) generate feature maps from input data, the CRF layer ensures that the predictions 

adhere to spatial or sequential constraints inherent in the data. In medical report analysis, for 

example, the DL component may extract relevant patterns or anomalies from textual data. In 

contrast, the CRF refines these extractions by considering the relationships and dependencies 

between consecutive words or terms, resulting in a more cohesive and context-aware 

interpretation. The combination of DL feature extraction and CRF structured output ensures 

robustness, precision, and coherence in the algorithm's predictions, effectively tailoring it to 

complex tasks such as medical report analysis. 

3.2 Characteristic Features of Covid19 Symptoms 

Lung Ultrasound (LUS) detection of COVID-19 is a new area of research, and its use as a 

primary diagnostic tool is still being investigated. Several characteristics suggestive of 

COVID-19-related lung involvement, however, have been described in the literature. While 

these characteristics may be indicative of COVID-19, they are not exclusive to this disease. 

Similar ultrasound findings can be seen in other lung conditions. 

COVID-19 lung ultrasound findings include: 

• A-lines: The presence of A-lines (horizontal artifacts) in healthy lungs does not rule 

out COVID-19. The lung may appear normal with regular A-lines in early or mild disease. 

• B-lines: It is vertical, hyperechoic artifacts that extend from the pleural line to the 

screen's edge. They can be either focal or multifocal in nature. An increase in the number and 

density of B-lines indicates interstitial changes, which are common in viral pneumonia, 

including COVID-19. 

• Coalescent B-lines: These are caused by a thickened interlobular septum or alveolar 

consolidation. They are visible in more severe cases. 

• Irregular Pleural Line: In COVID-19 patients, the pleural line may appear fragmented 

or irregular. 

• Subpleural Consolidation: It is area of hypoechoic tissue near the pleural line. They 

are caused by localized inflammation or infarction of lung tissue. 
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• Lung Consolidation: It is larger hypoechoic areas deep within the lung tissue that can 

indicate alveolar filling processes such as pneumonia. Bronchograms of air may be present. 

• Absent or Reduced Lung Sliding: Although not specific to COVID-19, reduced or 

absent lung sliding can be seen. 

• Pleural Effusions: Large pleural effusions are unusual in COVID-19, and their 

presence should raise the possibility of a different diagnosis. 

• Lung Pulse: This is a visual representation of the heartbeat in the lung, which is 

frequently seen in areas of complete lung consolidation. 

Using lung ultrasound to diagnose COVID-19 can be especially helpful because it can be done 

anywhere, doesn't use radiation, can be done more than once, and can be done in real time. 

But for a correct diagnosis, it's important to look at the results along with the patient's 

symptoms, other imaging studies (like chest X-rays or CT scans), and PCR tests. 

 

Figure 1: Operational flow of Covid19 Detection using Ultrasound Images 

Lung artifacts exhibit variations across different diseases. Notably, artifacts from COVID-19 

present distinct characteristics. A-lines, for instance, are parallel to the pleural line and 

maintain even spacing; however, in patients affected by COVID-19, these lines can manifest 

irregularities alongside damaged pleural and B-lines. Specifically, there are 50 observed A-

lines, with a consistent distance of 5 pixels between each. Pleural effusion is a critical marker 

in COVID-19 patients. A notable characteristic in the affected is the reduced presence or 

complete absence of lung sliding. Additionally, the irregularity in the pleural line can extend 

up to 80 pixels in length. Factors such as varied lung consolidations and pleural thickening are 

instrumental in estimating the infection's extent in a diseased individual's lungs, as seen in 

Table 1. 

Table:1 Parameters and its values for pixel-wise feature extraction process 
Feature Hypothetical Value 

B-lines  

Number of isolated B-lines 12 

Average length 130 pixels 

Coalescent B-lines  
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Areas with coalescent B-lines 3 

Average area size 50 x 60 pixels 

Irregular Pleural Line  

Length of observed 

irregularities 

80 pixels 

Subpleural Consolidations  

Number of consolidations 2 

Average size 30 x 40 pixels 

Lung Consolidations  

Number of lung consolidations 1 

Size 80 x 90 pixels 

A-lines  

Number of A-lines observed 50 

Average distance between A-

lines 

5 pixels 

Absent or Reduced Lung 

Sliding 

 

Length of regions 40 pixels 

Pleural Effusions  

Number of detected effusions 0 

Lung Pulse  

Regions with detectable pulse 2 

Average size 20 x 20 pixels 

Consider 𝑥 to be the Lung Ultrasound (LUS) image composed of 𝑛 pixels. Let 𝑙 denote the 

length of the lung consolidation region and pleural lines, both crucial for identifying infected 

lungs. The traditional method for lung disease detection is articulated as: 

𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑙|𝑥)             (1) 

In the Conditional Random Field (CRF) approach, raw LUS data is characterized using the 

conditional probability distribution: 

                  p(l|x) =
e(φ(l,x))

∫ e(φ(l,x))dl
∝

−∝

        (2) 

Where, 𝜑(𝑙, 𝑥) is the energy function articulated in terms of interaction potentials such as unary 

and pairwise potentials. These potentials enable efficient differentiation of irregular pleural 

lines (𝑙) and lung sliding (𝑠), crucial for COVID-19 detection. The energy function can be 

expanded as:   

𝜑(𝑙, 𝑥) = ∑𝑚∈𝑙 ψ(Lm,x; α) + ∑𝑚,𝑛∈𝑠 ϕ(Lm,Ln,x; β) (3) 

In this context, ψ represents the unary potential, proficient in regressing irregularities in the 

pleural and B-lines of the LUS. Meanwhile, ϕ is the pairwise potential, optimizing the 

distinction between neighboring pixels to discern A-lines and reflections caused by pleural 

lines for precise detection. The terms α and β are learning hyperparameters. 

In pixel-by-pixel computations, the unary potential is utilized. To delineate the LUS affected 

by COVID- 19, a specific pixel size is considered, and deep learning techniques are employed 

for feature extraction. Pixel- wise regression of the input LUS image is achieved using the 

unary potential, represented as: 
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ψ(Lm,x; α) = −(Lm − rm(α)) 2     (4) 

Where, rm stands for the hyperpixel region, characterizing the COVID-19 affected part of the 

LUS, based on the deep learning model's parameters, α. 

For the smoothening of neighboring pixels, the pairwise potential is employed. Conditional 

Random Fields (CRF) tap into edge features to identify pleural line irregularities and lung 

consolidations in the COVID-19 affected LUS image. Generally, the pairwise potential is: 

Φ(Lm, Ln, x; β) =
1

2
∑ βgsm,n

g
(Lm, Ln)2    

G

g=1
(5) 

The entire energy is described as: 

φ = − ∑ (Lm, Lnm∈l (α))2 −
1

2
βgsm,n

g
(Lm, Ln)2       (6) 

For vector estimation simplification, the energy function, using the Laplacian function, is: 

                        𝜑 = 𝑦(2𝑟𝑇 − 𝜌𝑦𝑇) − 𝑟𝑟𝑇                                            (7) 

Considering (2𝑟𝑇 − 𝜌𝑦𝑇) = 𝜕, the CRF conditional probability distribution from equation (2) 

simplifies 

                  p(l|x) = √
|ρ|

πn
e(yy ∂−ρ−1rrT)          (8) 

Subsequently, the negative log of the CRF probability function is: 

− log 𝑝(𝑙|𝑥) = 𝑦𝜕 − 𝜌−1𝑟𝑟𝑇 − 
1 

(log|𝜌| + n log(π))     (9) 

 

To minimize the negative log-likelihood of the training data during the deep learning model's 

training, the objective function is defined as: 

 minα,β>0 −∑𝑁 log 𝑝(𝑙|𝑥; ∝, 𝛽) + 
𝑤1 

‖𝛼‖2 + 
𝑤2 

‖𝛽‖         (10) 

Where, 𝑁 is the maximum number of LUS dataset images. Overfitting is mitigated using the 

weight decay parameter as a regularization factor for both learning parameters in deep learning 

techniques. 

3.4 Highlights the Infectious Depth 

The percentage of the infected lung region is determined by solving equation (1). The estimate 

is represented as: 

y = arg max(𝑦𝜕 − 𝜌−1𝑟𝑟𝑇 −1/2
 
(log|𝜌| + n log(π))    (11) 

To address the Maximization of A Posteriori (MAP) challenge, the partial derivative of  the  

equation with respect to 𝑦 is taken: 



                                                                Utilizing Deep Learning for the Rapid… Logu K et al. 160  
 

Nanotechnology Perceptions Vol. 20 No. S6 (2024) 

                                
∂{y(2rγ − pyT)}

∂y
= 0                (12) 

Simplifying, we get: 

                          −𝑦2 𝜌 + 2𝑟𝑦 = 0                                   (13) 

Which leads to: 

                                  𝑦 = 𝜌−1𝑟                                       (14) 

Equation (14) clearly indicates that the problem has an optimal solution and can be addressed 

using the Conditional Random Field function combined with Deep Learning (CRF-DL) 

algorithm. 

3.5 Processing Time Factor 

3.5.1 Conventional NLP Algorithm 

The time complexity generally increases linearly with the number of documents. Complexity 

of the NLP pipeline conveys Simple bag-of-words models will be much faster than deep 

learning models like RNNs or Transformers. Preprocessing steps: Tokenization, stemming, 

and other preprocessing steps can add to the time. Approximation: Given an average-sized 

dataset and a mid-level NLP pipeline, let's say the processing time is 𝑇𝑁𝐿𝑃. 

3.5.2  Proposed CRF-DL Algorithm 

The size of the dataset is a major factor in the time complexity, as is the case in traditional 

NLP. Network complexity: More time is needed for forward and backward passes in deeper 

networks. The computational complexity of CRF-DL arises from the iterative algorithms used 

in them. Approximation: The combination of deep learning with CRF can be more 

computationally intensive. If the deep learning model's time is 𝑇𝐷𝐿and the CRF's time is 𝑇𝐶𝑅𝐹, 

then the total processing time is 𝑇𝐷𝐿 + 𝑇𝐶𝑅𝐹. Given that both DL models and CRFs can be 

complex, 𝑇𝐷𝐿 + 𝑇𝐶𝑅𝐹 is likely > 𝑇𝑁𝐿𝑃 for the same dataset. 

Let's pretend that a standard workstation equipped with a powerful GPU is processing a dataset 

of 10,000 textual medical reports. Time estimates for hypothetical processing of each method 

are as follows: 

Conventional NLP: Using a standard TF-IDF approach combined with a machine learning 

model like SVM. 

• Preprocessing & Vectorization: 2 minutes 

• Training: 5 minutes 

• Total Approximate Time: 𝑇𝑁𝐿𝑃 = 7 minutes. 

Proposed CRF-DL: Using a deep neural network (like a LSTM model) combined with a CRF 

layer. 

• Preprocessing: 1 minute 

• Neural Network Training: 30 minutes 
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• CRF Iteration and Optimization: 10 minutes 

• Total Approximate Time: =41 minutes. 

Note: These are fictitious numbers used for demonstration purposes only. The characteristics 

of the dataset, the specific models used, the hardware capabilities, and other implementation 

details could all significantly affect how long it takes in practice. 

 

4. Results and Discussion 

This section delves into the assessment of our methodologies for detecting COVID-19 

symptoms. Our analysis focuses on two distinct systems: 

4.1 Conventional NLP System 

This system bases its test outcome purely on the medical report. The results from this approach 

serve as a reference point, allowing us to understand the baseline accuracy in the detection of 

COVID-19 symptoms. 

4.2 Conditional Random Field Deep Learning (CRF-DL) Algorithm 

Our proposed algorithm stands apart in its design and execution. Unlike the conventional 

system, the CRF-DL algorithm doesn't solely rely on medical reports. It introduces a two-

pronged strategy: 

• First, it harnesses the power of deep learning to ensure the accurate extraction of COVID-19 

symptoms from ultrasound images. 

•Then, the extracted features are seamlessly integrated into a conventional NLP system. This 

synergy updates and generates a new medical report, providing a holistic view of the patient's 

health. 

• A salient feature of the CRF-DL algorithm is its potential for self-recognition regarding 

COVID-19 symptoms. This not only augments its diagnostic capability but also fosters easy 

accessibility for users. 

Our comparative analysis underscores the superiority of the CRF-DL algorithm in terms of 

accuracy. The consistent and precise detection of COVID-19 symptoms using this method has 

a direct and positive impact on the medical report generation. As we dissect the results in the 

subsequent sections, it becomes evident that the integration of deep learning with NLP paves 

the way for a more robust and reliable diagnostic tool in the fight against COVID-19. 

4.3 Dataset Acquisition and Challenges 

It is difficult to navigate the landscape of available datasets for research, particularly in the 

realm of  detecting COVID-19 symptoms via ultrasound images. To provide a comprehensive 

understanding of the difficulties have faced in our research: 

(i) Limited Public Availability: A comprehensive, freely accessible dataset of 

ultrasound images pertinent to COVID-19 symptom detection remains elusive. 

This limitation posed a significant challenge to our research efforts. 
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(ii) Existing Datasets: POCUS 101 is acquired some ultrasound images and video clips 

are accessible, the volume and specificity may not fully satisfy demanding research 

requirements. With its labelled ultrasound images that are suitable for machine 

learning applications, Radiopaedia is a platform that shows promise. The 

completeness of such data is still debatable, and though. Although Kaggle 

frequently acts as a repository for datasets, there weren't many ultrasound images 

available for our study. Since older datasets weren't updated, the data's recentness 

was also a cause for concern. 

Our primary goal was not simply to collect data. We wanted to capture specific COVID-19-

associated features in ultrasound images, such as A-lines, B-lines, Subpleural Consolidations, 

Irregular Pleural Line, Reduced Lung Sliding, and Pleural Effusions. After successfully 

extracting these features, we proceeded to use deep learning algorithms. These algorithms, 

which were adept at recognizing COVID-19 symptoms in real time, served as a conduit to our 

final stage: generating medical reports using an NLP model. 

4.4 Qualitative Analysis of COVID-19 Symptom Feature Extraction 

In our qualitative analysis, we aimed at accurately discerning the characteristic features of 

COVID-19. These features—namely A-line, B-lines, Subpleural Consolidations, Irregular 

Pleural Line, Reduced Lung Sliding, and Pleural Effusions—served as critical markers in our 

evaluation using the proposed CRF-DL algorithm. To provide a comprehensive understanding, 

let's delve into the phases involved in the extraction process: 

(i) Pre-processed Image: This phase focuses on refining the ultrasound images by 

removing noise, enhancing contrasts, and making the intrinsic features more prominent for the 

subsequent stages. Pre- processing ensures that any distortions or artifacts from the original 

capture don't hinder accurate extraction. 

(ii) Feature Point Detection: At this stage, the algorithm identifies potential key points 

that hint towards the characteristic COVID-19 features. These points serve as primary 

candidates for a deeper evaluation in the following stages. 

(iii) Evaluation of Feature Depth: This evaluation delves deeper into the previously 

identified feature points. It assesses the depth at which these features are present in the 

ultrasound image, offering insight into the extent of lung involvement and the potential 

severity of the disease. 

(iv) Highlights the Feature Spread: This phase accentuates the spread or distribution of the 

detected features. By doing so, it provides a visual representation of areas with a higher 

concentration of symptoms, potentially indicating regions of concern within the lungs. 

(v) Segmented Portion: Post highlighting, the algorithm segments or isolates these 

regions. This segmentation allows for a focused analysis, ensuring that subsequent evaluations 

are accurate and uninfluenced by non-essential parts of the image. 

(vi) Identify the Infectious Depth: In this final phase, the algorithm gauges the depth of 

infection based on the segmented regions. This depth analysis assists clinicians in determining 

the potential progression of the disease, offering insights that might be pivotal for treatment 

decisions. 
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Table 2 provides a visual representation of these phases, showcasing the evolution of the image 

as it transitions through each extraction stage, further elucidating the prowess and precision of 

the CRF-DL algorithm. 

Table 2. shows the image's evolution through each extraction stage, demonstrating the CRF-

DL algorithm's strength and accuracy. 

 

In Figure 1 shows we have five different video clips. The choice of these clips was meticulous, 

ensuring that they encapsulated the essential characteristics vital for our research. Our 

objective was to extract frames that best represent the five crucial features linked to COVID-

19 symptoms. The dynamic nature of video clips presents both a challenge and an opportunity: 

while it offers a more comprehensive view of the lungs compared to static images, it also 

necessitates the pinpointing of frames that best encapsulate the disease's indicative signs. To 

detect COVID-19 disease symptoms from ultrasound imagery, we used a proposed CRF-DL 

algorithm that relied on video clips. These are dynamic videos that capture the movement and 

variability of lung features in real time, rather than static images. Because of the nature of 

video clips, they are made up of many frames that chronicle these features over time. 

Specifically. 

Ultrasound images are analysed to identify covid19 symptoms using the best frames which is 

depicted in Figure 2, later it uses to provide a visual representation of our extraction process. 

Among the multitude of frames generated from the five video clips, only a select few 

showcased the significant features with the clarity and detail necessary for accurate symptom 

detection. To facilitate easy identification and reference, these crucial frames were highlighted 

with a yellow color box. This visual demarcation ensures that the extracted frames, which form 

the crux of our analysis, stand out amidst the plethora of frames generated from the video clips. 

The efficiency of the proposed CRF-DL algorithm in extracting specific features indicative of 

were both encouraging and evidence of the algorithm's precision COVID-19 symptoms from 

ultrasound images was measured in our study. The outcomes were both encouraging and 

evidence of the algorithm’s precision. 



                                                                Utilizing Deep Learning for the Rapid… Logu K et al. 164  
 

Nanotechnology Perceptions Vol. 20 No. S6 (2024) 

 

Figure 2. Best incorporated frames are chosen to extract the distinctive features of covid19 

symptoms from ultrasound images. 

 

Figure 3 

Figure 3 shows the A-line feature, the algorithm was pretty accurate, with a 90% success rate. 

This high percentage shows that the model can pick out this important feature, which is needed 

to diagnose COVID-19 symptoms. Another important marker, the B-line, was found with an 

accuracy of 85%. Even though this value is slightly lower than the A-line, it still shows how 

well the CRF-DL algorithm captures this key feature. When they moved on to Subpleural 

Consolidations, the accuracy was 88%. Given how complicated this feature is and how 

important it is for diagnosing diseases, this high accuracy rate is impressive. When it came to 

finding the Irregular Pleural Line, the algorithm did a great job with a 92% accuracy rate, 

showing that it is good at finding even the smallest details. For Reduced Lung Sliding, 87% 
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of the time it worked. Again, this value shows that the algorithm works the same way with 

different sets of features. Lastly, the accuracy was a very high 91% for Pleural Effusions, a 

feature that is often a clear sign of respiratory problems like COVID-19. 

An accuracy percentage for all the features in a way that was easy to compare. On the x-axis, 

the different features were listed, and on the y-axis, the percentage of accuracy was shown. 

Overall, the results not only showed how well the CRF-DL algorithm worked, but also showed 

that it could be a reliable way to find COVID-19 symptoms in ultrasound images. 

4.5 Statistical Analysis of COVID-19 Symptom Detection 

A key component of our research was the evaluation of results from both natural language 

processing (NLP) and the proposed CRF-DL algorithm. We used the independent T-test 

analysis to determine the statistical significance of observed differences between these two 

methods. This statistical method compares the means of two unrelated groups, in this case, the 

results of NLP and the CRF-DL algorithm. However, it is critical to understand the 

independent T-test's underlying assumptions. Notably, the test assumes that the variances 

(spread of data points) of the two groups are equivalent. If this assumption is not met, the Type 

I error rate may be compromised, resulting in false-positive results. 

We used the Levene's Test of Equality of Variances, a tool that is automatically generated in 

statistical software like SPSS when the independent T-test is run. This test determines whether 

the variances between groups are uniform. If the Levene's test detects a statistically significant 

difference in variances, it implies that the T-test's assumption has been violated. Fortunately, 

there are solutions. When dealing with unequal variances, the t-statistic can be adjusted by 

combining the pooled estimate for the error term with a degree of freedom modification via 

the Welch-Satterthwaite equation. This ensures that the results are valid even after the initial 

violation. It's worth noting that many SPSS users may be unaware of the intricate mechanics 

behind these changes. The software typically displays the results as "Equal variances assumed" 

or "Equal variances not assumed," rarely delving into the specifics of the underlying 

corrections used. In our research context, ensuring the accuracy and validity of our statistical 

tests was critical because it directly influences the credibility of our findings concerning the 

NLP and CRF-DL algorithms. 

Table 3. The independent sample T test suggests a significance of 0.04 (p<0.05) for the NLP 

and CRF-DL algorithms. 

Accuracy 95% Credible 

Interval 

 F Sig T Lower 

Bound 

Upper 

Bound 

Uniform Variance 

(Loss) 

20.93 0 8.418 24.6015 40.9664 

Uniform Not 

Variance 

 

  8.418 24.1181 41.4498 
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Uniform Variance 

Assumed 

(Accuracy) 

10.919 0.004 -2.079 -

12.7269 

0.0669 

Uniform not 

Variance 

  -2.079 2.9388 0.2788 

Table 3 presents the results from a randomized sample trial. We set the confidence intervals 

for the dataset at 95% and employed the Independent Sample T-Test for evaluation. The 

comparison revealed that the proposed CRF-DL algorithm outperforms conventional NLP 

techniques. There's a noticeable difference in processing performance between the two 

methods, with the CRF-DL and NLP approaches exhibiting a mean difference of 4.6 and a 

consistent standard deviation difference. For the NLP technique, the 95% confidence interval 

stands at 0.6697. Notably, the significance level after the test was calculated to be 0.00. Given 

the observed statistical outcomes, especially the marked variance difference, it's evident that 

the proposed CRF-DL algorithm showcases superior performance over the traditional NLP 

method. Using the Independent Sample T- Test, we defined the confidence intervals for the 

dataset at 95%. The findings confirm that the proposed CRF-DL algorithm holds a 

performance advantage over the conventional NLP method. 

A noticeable difference in processing capabilities between the CRF-DL and NLP approaches 

is evident. The T-test for equality of means indicates a mean difference of 4.6 and a consistent 

standard deviation difference. For NLP, the 95% confidence interval is determined to be 

0.6697. With a significance level of 0.00 post-test, the CRF-DL algorithm's superiority is 

statistically undeniable. 

Table 4. Statistical comparison between proposed CRF-DL and Conventional NLP 
Algorithm No. of 

Epochs 

Mean 

accuracy 

Std. 

Dev 

Std. Err 

Mean 

Processing 

time (sec) 

Proposed 

CRF-DL 

200 87.5070 3.91380 1.23765 52 

Conv. 

NLP 

200 81.1770 8.79731 2.78195 15 

Furthermore, Table 4 delineates the mean accuracy rates: 87.50% for the proposed CRF-DL 

algorithm and 81.17% for the NLP method. Comparative T-Tests highlight a conditional Std. 

Error Mean of 1.23765 for the CRF-DL and 2.78195 for the NLP. It's evident from these 

figures that the CRF-DL approach, denoted here as NCRP, achieves a higher accuracy than its 

NLP counterpart. This discrepancy in performance is further underlined by their respective 

standard deviations: 3.91380 for CRF-DL and a considerably higher 8.79731 for NLP, 

suggesting greater variability in the latter's performance. It's a recognized principle in statistics 

that higher standard deviations often correlate with reduced detection accuracy. 
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Figure 4. Mean Accuracy Comparison between CRF-DL and NLP 

Figure 4 offers a visual representation, juxtaposing the predictions made by both the proposed 

CRF-DL and the existing NLP algorithms against the true values. Emphasizing once more the 

95% confidence interval, the mean accuracy of CRF-DL stands impressively at 87.50%, 

whereas the NLP trails at 81.17%. Clearly, the precision of CRF-DL surpasses that of NLP. 

When evaluated in the context of analyzing ultrasound images, the results are unequivocal: the 

proposed CRF-DL algorithm demonstrates a discernibly higher performance level than the 

NLP method. 

 

5. Conclusion 

This research endeavour illuminated the comparative capabilities of two distinct algorithms – 

the conventional NLP method and the proposed CRF-DL algorithm – in detecting COVID-19 

symptoms using ultrasound imagery. The comparative results presented a clear demarcation 

in terms of performance. Statistical analysis using the Independent Sample T-Test with a 

confidence interval of 95% confirmed the CRF-DL algorithm's enhanced capability. In a side-

by-side comparison, the CRF-DL had an accuracy rate of 87.50%. The NLP method, on the 

other hand, lagged slightly behind, with a mean accuracy of 81.17%. This 6.33% difference 

highlights the CRF-DL algorithm's superior efficacy in this specific application. Another 

aspect of our evaluation was the consistency of the results. The standard deviation values 

distinguished the two methods even more. While the CRF-DL algorithm had a lower standard 

deviation, implying consistent results, the NLP algorithm had a higher variability in its 

performance, which can be significant in medical applications where precision is critical. 

Recognizing the evolving nature of deep learning and its transformative impact on medical 

image processing is critical. The findings of this study support a growing belief in the medical 

technology domain that leveraging advanced algorithms such as CRF-DL can provide more 

accurate and consistent results, thereby improving diagnostic capabilities. The CRF-DL 

algorithm emerges as a promising tool in our quest for efficient COVID-19 symptom 

detection, promising to augment medical professionals in their diagnostic endeavours, 

ensuring timely and precise interventions. 
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