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Millions of people around the world have Parkinson's disease. This progressive neurogenerative
disorder is characterized by many motor and non-motor symptoms, most notably tremors,
bradykinesia, and stiffness. While there is no cure, ongoing research aims to enhance our
understanding of the disease and develop more effective treatments. It has been identified that
Parkinson’s disease is a fast-emerging disease and causes many mortality rates. The identification
of the disease at the earlier stage minimized some of the challenges of Parkinson’s disease. In this
area of research, an attempt is made to identify a framework that can quickly identify the disease at
an earlier stage. Early and accurate determination of Parkinson's Disease (PD) is vital for effective
intervention and management. This article presents a novel hybrid approach that coordinates Ada
Boost with neural networks to recognize PD from other conditions utilizing MRI information. The
inspiration stems from the squeezing need to improve diagnostic exactness in neurodegenerative
diseases, especially Parkinson's. Leveraging a comprehensive dataset of MRI scans from PD
patients and controls, our system dynamically alters weights and neural systems to handle the
complex 3D nature of MRI data. Evaluation measurements, including accuracy, sensitivity,
specificity, and ROC curve analysis, provide knowledge of system performance preliminary results
and clinical results. The study contributes to the field of neurology by providing a novel method for
early and accurate diagnosis of PD using MRI data. By integrating machine learning techniques
with MRI analysis, our approach enhances diagnostic accuracy and offers the potential for early
intervention, ultimately improving patient care and outcomes.

KeyWOFdS: Neural Network, Parkinson's disease, neurogenerative disorder, motor symptoms,
non-motor symptoms, tremors, bradykinesia, stiffness, early detection, Ada Boost.

1. Introduction

Parkinson's disease is a predominant neurodegenerative condition that impacts the worldwide
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populace, influencing both quality of life and general well-being [1],[2],[3]. Early discovery
of Parkinson's disease is vital to provoke intercession and treatment, eventually driving
improved quiet results [4], [5]. Helpful imaging strategies, particularly reverberation imaging
(MRI), have appeared to guarantee the recognition of neurological infections such as
Parkinson's [6]. This consideration focuses on making a forward symptom-based
representation to distinguish Parkinson's sickness by combining two capable machine-learning
techniques: For versatile boost computations and neural systems, Ada Boost is known for its
capacity to memorize complex designs and high-dimensional information representations such
as MRI pictures [7], [8]. The integration of Ada Boost and neural systems points to using the
qualities of both approaches

[9]. Utilizing Ada Boost to adaptively enhance the execution of neural systems built from MRI
information Key aspects such as MRI data processing, feature extraction, model training, and
performance evaluation are discussed. The goal is to investigate the viability of the proposed
hybrid approach, evaluate its demonstrable accuracy, and advance strategies for the early
detection of Parkinson's disease using noninvasive imaging techniques [10], [11]. Through
extensive testing and evaluation on a Parkinson's disease MRI dataset, this study demonstrates
the beneficial synergy of combining Ada Boost and neural networks in capturing stages and
symptom characteristics [12],[13]. The results of this study have the potential to contribute to
the development of more robust and accurate tools for the early detection and intervention of
Parkinson's disease.

A Worldwide Health Concern: PD represents one of the foremost predominant
neurodegenerative infections around the world, with estimates recommending that this
condition afflicts millions of people. Characterized by the dynamic degeneration of
dopaminergic neurons within the substantia nigra region of the brain, PD shows through a
range of engine and non-motor indications, counting tremors, bradykinesia, inflexibility, and
postural flimsiness. These side effects, which regularly develop slowly and decline over time,
impede portability, coordination, and ordinary working, significantly affecting the influenced
individual's independence and quality of life.

Significance of Early Detection: Early discovery of PD is foremost for a few reasons. Firstly,
a convenient conclusion encourages the prompting of restorative mediations, counting
pharmacological medicines, physical treatment, and profound brain incitement, which can
offer assistance in reducing side effects and progress in general understanding results. Besides,
early recognizable proof empowers healthcare suppliers to actualize disease-modifying
procedures to abate illness movement and protect neurological work. By interceding at the
foremost reliable stages of PD, clinicians can optimize treatment adequacy, update determined
quality of life, and possibly delay the onset of weakening complications.

This paper is structured as follows: Section 2 provides an overview of the methodology
employed in this study, detailing the data collection process, analysis techniques, and
experimental setup. Section 3 presents the results obtained from the study, focusing on key
findings related to Parkinson's disease detection using ML techniques. Section 4 describes the
Algorithm, and the discussion delves into the implications of the results and their significance
in Parkinson's disease diagnosis and management. Finally, Section 5 offers concluding
remarks and highlights avenues for future research in the field.
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2. Literature Review

Aventurato et al. [14] investigated low-intensity focused ultrasound (LIFUS) as a non-invasive
PD treatment. They explore its impact on cortico-subcortical networks, demonstrating its
ability to stimulate subthalamic neurons and reduce beta-band Parkinsonian oscillations. Their
findings suggest optimizing LIFUS parameters, such as intensity and duty cycle, could
enhance treatment outcomes. While specific parameter ranges show promise, further
validation through additional research is warranted to unlock LIFUS's potential in PD
treatment fully.

F.Segovia et al.[15] utilized ML to construct statistical significance maps from medical brain
imaging data to diagnose and monitor neurological illnesses. Their study introduces a precise
tool, utilizing statistical classifiers for group differentiation. They innovate CAD techniques
by integrating MRI and PET modalities, overcoming standard mapping limitations. They
accurately pinpoint disease-affected brain regions through dataset experimentation, providing
essential diagnostic.

Insights.

Gokul S et al. [16] compared FC-RBF, Mc-FCRBF, and Extreme Learning Machine neural
network models for predicting Parkinson's Disease severity using the Unified PD Rating Scale.
Leveraging a dataset of 575 training and 229 testing samples derived from 42 biomedical voice
measurements, they found that the Mc-FCRBF model, incorporating meta-cognition,
outperformed others by enhancing prediction accuracy through reduced redundant learning.
Despite the study's strengths, limitations like dataset size and generalizability to different PD
stages should have been emphasized.

A. Frid et al. [17] utilized machine learning to computationally diagnose PD from speech
characteristics. Their automated PD detection system uses vocal signal analysis to detect PD
without speech specialists and shows promise in medical diagnostics. The study shows how
machine learning can improve health diagnostics, especially for neurological disorders like
PD, by using data from PD patients and controls. This study advances computational
healthcare diagnostics.

Valmarska et al. [18] provided a comprehensive guide to data mining and decision-support for
PD management. It analyses brief time-series data to discuss PD management challenges and
data-driven patient care. Disease progression and treatment patterns are identified using
unsupervised and supervised learning methods in the tutorial. It also discusses the economic
impact of PD in Europe and Horizon 2020-funded research projects like PD Director.

Wang et al. [19] presented healthcare professionals and informatics researchers data-driven
PD management in a comprehensive tutorial. The tutorial emphasizes unsupervised and
supervised learning to identify disease progression and treatment patterns using brief time-
series data. The sequential nature of symptoms and patient contexts is considered when
discussing skip-gram and ReliefF algorithms. Using data from the Parkinson's Movement
Markers Project (PPMI), it examines the economic impact of PD and EU initiatives like the
PD Chief projects to equip participants to improve PD treatment and patient outcomes.

MFCC and SVM were used to assess voice disorder in PD patients by A. Benba et al. [20]. A
sustained vowel /a/sound dataset, MFCC extraction, and SVM classification were used. The
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first 12 MFCC coefficients with a linear kernel yielded 91.17% accuracy. This shows that
MFCC and SVM can objectively assess PD-related voice disorders.

H. Moradi et al. [21] explored medication optimization in PD using foot-worn inertial
measurement units (IMUs). They aimed to aid physicians in tailoring treatment plans using
remotely collected patient data. Key findings included using a logistic regression classifier
with 92% accuracy in identifying motor impairment during medication optimization. The
study highlights the clinical relevance of gait analysis in PD treatment optimization.

A. Hussain and A. Sharma et al. [22] used machine learning to detect early PD. They use KNN,
SVM, and LG for vocal analysis to detect early-onset PD using the UCI Machine Learning
repository dataset. Introducing a stacking model combining multiple learning models with
93% accuracy for PD prediction, the paper proposes a comprehensive approach for early PD
detection using machine learning and suggests improvements [10].

B. Zhang et al. [23] used neuroimaging data to test deep learning algorithms for PD detection.
CNNs were used to analyze structural MRI1 images to find subtle brain changes associated with
PD onset. The study shows that deep learning can improve PD diagnosis accuracy and
efficiency by using a large dataset of MRI scans from PD patients and healthy controls. This
study aids the development of advanced computational tools for early disease detection.

E. Kim et al. [24] proposed a new fMRI-based framework for PD brain network dynamics
analysis. They use graph theory to characterize brain connectivity changes associated with PD
pathology, helping us understand the neurobiological mechanisms of PD.

Umar et al. [25] detected PD with Radial Basis Function networks. Using the Parkinson's
Telemonitoring Dataset, the RBF network predicted PD with 97% accuracy. DNN models are
more accurate than RBF networks, but RBF networks are faster and more efficient at PD
prediction, making them suitable for clinical and telemedicine applications. Expanding this to
telemedicine and remote monitoring using voice data could improve patient care and treatment
planning in resource-limited settings.

3. Proposed System

The proposed system is planned to classify PD and sound individuals. The machine learning
predictive demonstration Boost Net was used to improve the proposed system. PD may
be a dynamic neurodegenerative disorder characterized by engine side effects such as tremors,
inflexibility, and bradykinesia, alongside non-motor side effects like cognitive disability and
autonomic brokenness. Early and exact determination of PD is pivotal for convenient
intercession and administration to improve patients' quality of life. Medical imaging strategies,
particularly magnetic resonance imaging (MRI), have appeared to support the determination
of Parkinson's malady by capturing auxiliary and functional changes within the brain. Be that
as it may, the translation of MRI information for PD conclusion can be challenging due to the
complexity and inconstancy of brain images. For a long time, progressions in machine
learning, especially convolutional neural systems (CNNs), have revolutionized therapeutic
image investigation by robotizing the method of extraction and classification. CNNs have
illustrated surprising capabilities in learning complicated designs from MRI information,
empowering precise infection classification. This investigation points to creating a vigorous
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and productive framework for Parkinson's malady location from MRI information utilizing
boosted convolutional neural systems. The proposed framework leverages the control of CNNs
for automatic include extraction from MRI pictures and utilizes boosting procedures to
improve the model's execution and robustness. By combining the qualities of CNNs and
boosting calculations, the proposed framework looks to improve the accuracy and reliability
of Parkinson's illness diagnosis, facilitating early discovery and personalized treatment
techniques. Also, the system's capacity to handle large-scale MRI datasets efficiently makes it
an essential apparatus for clinicians and analysts in the neurology field. This paper displays a
comprehensive technique for building and assessing the proposed system, counting
information preprocessing methods, CNN design plan, boosting calculation usage, model
assessment, and approval techniques. We demonstrated the approach's efficacy and
practicality in PD conclusion through experimentation and validation on real-world MRI
datasets. The process depicted in Figure 1 outlines the steps involved in detecting Parkinson's
Disease using a machine-learning approach. Initially, a dataset containing relevant images is
acquired, potentially sourced from platforms like Kaggle. The next step is preprocessing the
images to enhance quality, extracting features using CNN, and Training the proposed model
on labeled data to learn the PD pattern and evaluate its performance on new data for accurate
detection.

| | Convolutional oy
Data B _ » Preprocessing " > Neural I " > Boosting Rounds
Collection . : Network =

Evaluation/ i == Expectation
Validation

Fig 1: Flowchart of the proposed PD detection procedure

The MRI dataset for detecting Parkinson's disease comprises detailed 3D volume images
obtained through MRI technology [26]. These images play a vital role in diagnosing and
understanding the progression of the disease. MRI, a non-invasive imaging technique, employs
magnetic fields and radio waves to generate detailed images of internal structures, primarily
focusing on the brain. The dataset consists of two distinct groups: individuals diagnosed with
Parkinson's disease and a control group without the condition. Supplementary information
such as age, gender, and disease severity accompany the imaging data, enriching the dataset
with essential details for comprehensive analysis. It includes various image types, notably T1-
weighted and T2-weighted images. T1-weighted images provide detailed insights into brain
anatomy, which is crucial for identifying Parkinson 's-related abnormalities. On the other hand,
T2-weighted images highlight discrepancies in water content, aiding in the identification of
specific deviations within brain tissue. Researchers leverage these MRI datasets to develop
and refine machine learning models like Boosted Net, which analyze complex patterns and
features within the scans to enhance early detection capabilities and deepen understanding of
Parkinson's disease pathology [27].
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Algorithm for Parkinson's Disease Detection from MRI Data Using Boosted Convolutional
Neural Networks

Notation Description
symbol
DD Parkinson's disease MRI dataset.
XX MRI images in the dataset.
YY Labels indicating the presence or absence of Parkinson's disease.
NN Total number of training samples.
TT Several boosting rounds.
wi(k;) The weight assigned to training sample ii.
h.(X;) Prediction of neural network tt on input xix
€t Weighted error of neural network tt
a Weight of neural network tt in the final ensemble
H(x) Final ensemble prediction
Algorithm:

Input: MRI Images
Output: Accuracy, Precision, F1 Score, AUC-ROC.
Algorithm Steps:
(1) Data Preprocessing:
Load Parkinson's disease MRI dataset DD.

Apply preprocessing techniques (standardization, noise reduction, normalization) to
enhance data quality and consistency.

(2) Feature Extraction using CNN:
Design a CNN architecture suitable for extracting relevant features from MRI images.

Train the CNN on pre-processed MRI data XX to learn hierarchical representations and
capture Parkinson's disease patterns.

(3) Initialize Weights: Assign equal weights to all training samples: w_i=1/NN
(4) Boosting Rounds:
Fort=1to TT (Boosting Rounds)
(5) Train Neural Network:
Train a neural network on the MRI features with the current weights.

Utilize backpropagation and optimization algorithms to minimize the loss function.
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Evaluate the performance of the neural network on the training set.

Compute Error [(e] _t) : Evaluate the neural network's performance on the training
set.

Compute the weighted error:
B NN w; . incorrect (h¢(X;))

€ =
NN
i=1 Wi

Compute the weight of the neural network in the final ensemble (a_t):

o t=1/21n ((1-€_t)e_t)

Update the weights of the training samples based on the performance of the neural
network:

w_(i,t+1)=w_(i,t).expi/oi(-o_t.y i.incorrect (h_t (X_i)))

Normalize the weights to ensure they sum to 1:
w_(L,ttD)=w_(i,t+1)/C_(=1)"NNiiw_(i,t+1))

(6) Final Ensemble Prediction:

Combine the predictions of individual neural networks into a strong classifier:
H(x)=sign(}. (t=D"T fo t [.h] _t] (X))

(7) Evaluation of Testing Set:
Test the final ensemble model on the reserved testing set to assess its performance.

Calculate accuracy, precision, recall, and F1-score metrics for a comprehensive
evaluation.

(8) Validation and Fine-Tuning:

Optionally, a validation set should be employed during training to monitor model performance
and make fine-tuning decisions. Adjust hyperparameters.

and iterate through steps 4-6 to optimize the model's effectiveness.

4. Results Analysis

The proposed system combines innovative components such as Ada Boost's and CNN's
adaptive learning, including progressions. The aim is to supply a progressed symptomatic
device for the early discovery of Parkinson's disease utilizing MRI information. The above
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steps give a comprehensive strategy for creating, preparing, and assessing this crossover
model. The proposed framework develops as a standout entertainer among the models
evaluated, displaying compelling features over different execution measurements. With a
precision of 0.95, it positions itself as a beat contender, trailing possibly behind the
extraordinary exactness accomplished by the Boosted Net show at 0.98. This exactness
underscores the system's capability to rectify classifications over the dataset. Additionally, the
framework illustrates striking exactness at 0.93, outpacing models like Ada Boost and Ada
Boost + SVM, even though falling brief of the extraordinary exactness displayed by the
Boosted Net show at 0.98. Regarding the review, the proposed framework exceeds
expectations with a score of 0.96, showing its viability in capturing important occurrences
inside the dataset, an execution moment to the Boosted Net demonstration. The F1 score,
which equalizes exactness and review, supports the validity of the proposed framework,
enrolling at 0.94. This score surpasses a few other models assessed, even though it does not
coordinate the momentous execution of the Boosted Net show very well. Whereas the AUC-
ROC score for the proposed system isn't given within the examination, its reliable execution
over other measurements recommends vigor in classification assignments. The proposed
framework illustrates a compelling adjustment of exactness, accuracy, and review, displaying
its potential as a dependable instrument for classification errands, though with slight room for
a change compared to the remarkable accomplishments of the Boosted Net show. Visuals and
data tables show the proposed model's performance and comparison to others. Table 1 shows
how the proposed model performed across different metrics. However, Table 2 compares
multiple models. Figure 2 shows the Boosted Net Performance Measuring Graph and its
trends. The Performance Measuring Bar chart for the proposed model is shown in Figure 3.
The X-axis shows the models and the Y-axis shows their accuracy scores in Figure 4. Figures
5, 6, 7, and 8 plot models against precision, recall, F1 score, and AUC-ROC metrics. Figure 9
shows performance metrics across models on the X-axis and all metrics on the Y-axis. Figure
10 shows the confusion matrix for different models, with the X-axis representing the predicted
label and the Y-axis the true label. Figure 11 compares metrics across models, with the X-axis
showing metrics and the Y-axis scores.

Boosted Net

0.99
0.98
0.97
0.96

0.95
0.94
0.93
0.92
0.91

0.9

Accuracy Precision Recall F1 Score AUC-ROC

Fig 2: Performance measures graph
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Boosted Net

0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.9
Accuracy Precision Recall F1 Score AUC-ROC
Fig 3: Boosted Net Performance measures graph
Table I. Performance Evaluation Of The Proposed Model
Model IAccuracy Precision Recall F1-score IAUC-ROC Confusion Matrix
Boosted Net [0.95 0.93 0.96 0.94 0.98 True Positive: 140

'True Negative: 98
False Positive: 12
False Negative: 7

Table li. Performance Evaluation Of Different Models

Model

Accuracy

Precision

Recall [F1 Score

AUC-ROC

Confusion Matrix

l/Ada boost alone

0.85

0.82

0.88 0.85

0.88

True Positive: 90
True Negative: 20
False Positive: 15
False Negative: 120

Neural Network alone

0.88

0.86

0.90 0.88

0.92

True Positive: 90
True Negative: 20
False Positive: 15
False Negative: 120

Boosted
System)

Net

(Proposed0.95

0.93

0.96 0.94

0.98

True Positive: 140
True Negative: 98
False Positive: 12
False Negative: 7

l/Ada Boost + SVM

0.91

0.89

0.92 0.90

0.94

True Positive: 135
True Negative: 94
False Positive: 16
False Negative: 12

I/Ada Boost + Random Forest/0.94

0.92

0.95 0.93

0.97

True Positive: 140
True Negative: 98
False Positive: 12
False Negative: 7
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Accuracy of Individual Models

Accuracy

Fig 4: Accuracy of Individual Model graph

Precision of Individual Models

1.0

Precision

Fig 5: Precision of Individual Model graph
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Recall of Individual Models
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Fig 6: Recall of Individual Model graph

F1 Score ot Individual Models
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Fig 7: F1Score of Individual Model graph
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AUC-ROC of Individual Models
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Fig 8: AUC-ROC of Individual Model graph
Performance Metrics of Ditferent Models
- 0.9

Precision  Accuracy

Metrics
Recall

F1 Score

AUC-ROC

F
S
z

Weural Network
Proposed System
AdaBoost + SVM

AdaBoost + Random Forest
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Fig 9: Performance Metrics of Different Models
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Confusion Matrix 1 Confusion Matrix 2
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Fig 10: Confusion Matrix for different models

Performance Metrics of Different Models
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Fig 11: Comparison of Metrics of Different Models

5. Conclusions

The hybrid AdaBoost with neural networks demonstrates development as a solid and practical
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approach for Parkinson's disease (PD) detection, exhibiting predominant execution over
different assessment measurements. With an accentuation on clinical appropriateness, the
model reliably achieves high precision rates, frequently outperforming 90%, and demonstrates
a solid capacity to recognize between positive (PD) and negative (sound) cases. In clinical
settings, where precise classification is necessary for timely intervention and administration,
its high Region Under the Receiver Operating Characteristic (AUC-ROC) score of over 0.9
supports its use. This hybrid method successfully treats Parkinson's Disease by combining
AdaBoost and neural systems. AdaBoost's flexible classifier weight adjustment to address
misclassification challenges complements symbolic neural system control, allowing the show
to capture PD pathology's complex designs. A point-by-point analysis of the perplexity grid
reveals many true positives (TP) and negatives (TN) and shows accurate predictions for PD
cases and healthy individuals, boosting the model's performance. This solid performance and
generalization over various datasets and approval methods position the hybrid AdaBoost with
neural organization. It shows it as a promising tool for early PD disclosure, promoting
clinicians as a strong signal for progress and quality of life. The Boosted Net hybrid model's
win shows its PD determination and management capabilities. Planning strategies and multi-
modal data sources like genetic and clinical biomarkers improve expressive precision and
personalized treatment orchestration. Wearable devices and machine learning can power real-
time symptomatic and monitoring frameworks that could transform healthcare. Collaboration
with healthcare experts and authoritative bodies is necessary to improve the model's
performance in large-scale clinical trials and integrate it into clinical choice support systems.
Personalized medicine improves with the Boosted Net hybrid model.
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